

Department of Higher education Karnataka State Higher Education Council National Education Policy - 2020

Proposed Model Curriculum for Undergraduate Programme in Zoology

In

All state Universities and Colleges in Karnataka

For the year 2021-2022

Submitted by

Zoology/Genetics Subject Committee

NEP 2020

Model Curriculum Structure for Degree Program

B. Sc., Hons in Zoology

Name of the Degree Program: B. Sc., Hons

Discipline Core: Zoology Total Credits for the Program: 50/100/142/184/268

Starting year of implementation: **2021-22**

PROGRAM OBJECTIVES (POs)

POs1-The Programme offers both classical as well as modern concepts of Zoology in higher education.

POs2-It enables the students to study animal diversity in both local and global environments.

POs3-To make the study of animals more interesting and relevant to human studies more emphasis is given to branches like behavioural biology, evolutionary biology and economic zoology.

POs4-More of upcoming areas in cell biology, genetics, molecular biology, biochemistry, genetic engineering and bioinformatics have been also included.

POs5-Equal importance is given to practical learning and presentation skills of students. **POs6-**The lab courses provide the students necessary skills required for their employability.

POs7-Skill enhancement courses in classical and applied branches of Zoology enhance enterprising skills of students.

POs8-The global practices in terms of academic standards and evaluation strategies. **POs9-** Provides opportunity for the mobility of the student both within and across the world.

POs 10-The uniform grading system will benefit the students to move across institutions within India to begin with and across countries.

POs11-It will also enable potential employers in assessing the performance of the candidates across the world.

Credit distribution for the course

*In lieu of the research Project, two additional elective papers/ Internship may be offered

Assessment:

Weightage for assessments (in percentage)

Type of Course	Formative Assessment / IA Marks	Summative Assessment Marks
Theory	40	60
Practical	15	35
Projects	45	105
Experiential		
Learning		
(Internships etc.)		

IIA. Model Program Structures for the Under-Graduate Programs in Universities and Colleges in Karnataka

Sem.	Discipline Core	Discipline Elective(DSE) /	Ability Enhancement Compulsory Courses (AECC), Languages (Credits) (L+T+P)			Skill Enhancement Courses (SEC)	Total
	(DSC) (Credits)	Open Elective (OE)			Skill based (Credits)	Value based (Credits) (L+T+P)	
	(L+T+P)	(Credits) (L+T+P)			(L+T+P)		
Ι	Zoology A1(4+2)	OE-1 (3)	L1-1(3), L2-1(3)		SEC-1: Digital	Physical Education for Health &Wellness	25
	Botany B1(4+2)		(4 hrs. each)		Fluency (2) (1+0+2)	fitness(1)(0+0+2) (1) (0+0+2)	
Π	Zoology A2(4+2)	OE-2 (3)	L1-2(3), L2-2(3)	Environmental		Physical Education -	25
	BotanyB2(4+2)		(4 hrs. each)	Studies (2)		NCC/NSS/R&R(S&	
				Exit option v	with Certificate (50 credits)		
III	Zoology A3(4+2)	OE-3 (3)	L1-3(3), L2-3(3)		SEC-2: Artificial Inte-	Physical Education-	25
	Botany B3(4+2)		(4 hrs. each)		lligence (2)(1+0+2)	NCC/NSS/R&R(S&	
IV	Zoology A4(4+2)	OE-4 (3)	L1-4(3), L2-4(3)	Constitution		Physical Education -	25
	Botany B4(4+2)		(4 hrs. each)	of India (2)		NCC/NSS/R&R(S&	
	Exi	t option with Diploma in Science	e (100 credits) OR Cho	oose any one of the c	ore subjects as Major and the	e other as Minor	
v	Zoology A5(3+2)	Vocational-1 (3)			SEC-3: SEC such as		20
	Zoology A6(3+2)				Cyber Security (2)		
	Botany B5(3+2)				(1+0+2)		
VI	Zoology A7(3+2)	Vocational-2 (3)			SEC-4: Professional		22
	Zoology A8(3+2)	Internship (2)			Communication (2)		
	Botany B6(3+2)						
	Exit option with Bac	helor of Science Degree, B. Sc. 1	Degree in Zoology (14	2 credits) or continue	e studies with the Major in th	e third year	
VII	Zoology e A9(3+2)	Zoology E-1 (3)					22
	ZoologyA10(3+2)	Zoology E-2 (3)					
	Zoology A11(3)	Res. Methodology (3)					
VIII	Zoology A12(3+2)	Zoology E-3 (3)					20
	Zoology A13(3)	Research Project (6)*					
	Zoology A14(3)						
		Award of I	Bachelor of Science Ho	onours Degree, B.Sc.	(Hons.) Degree in Zoology (184 credits)	•

SEMESTER WISE CURRICULUM STRUCTURE OF COURSES

Semester	Name of the course/credits	What all program outcomes the course addresses (not exceeding three per course)	Pre- requisite course(s)	Concurrent course	Pedagogy	Assessment
1 Semester A1Major course	Cytology, Genetics and Infectious Diseases (4)	 The structure and functions of animal cell, cell organelles, cell- cell interactions, process of reproduction leading to new organisms. The principles of inheritance, Mendel's laws and the deviations. Inheritance of chromosomal aberrations in humans by pedigree analysis in families. 	Student must have studied Biology or equivalent subjects in Class 12.	Lab on Cell Biology and Genetics (2)	Lectures/Videos/ Seminars/Case study/Project/ Group discussion/Proble m Solving/ Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Ev aluation/ Analysis of result/ Application of Heutagogy,
1 Semester B1 Minor course	Biology of Non-Chordates (4)	 Learn the systematics and biology of non- chordates through their adaptive features. Study the functional biology of non-chordates through their body organization. Comprehend identification of species and their evolutionary relationships. 	Student must have studied Biology or equivalent subjects in Class 12.	Lab on Biology of Non- Chordates (2)	Lectures/Videos/ Seminars/Case study/Project/ Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Ev aluation/ Analysis of result/ Application of Heutagogy,
1 Semester OE1 Open Elective course	Economic Zoology (3)	 Acquaint the knowledge about basic procedure and methodology of integrated animal rearing. Students can start their own business i.e. self employments. Get employment in different sectors of Applied Zoology 	Student must have studied Biology or equivalent subjects in Class 12.		Lectures/Videos/ Seminars/Case study/Project/ Group discussion/Proble m Solving/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Ev aluation/ Analysis of result/ Application of Heutagogy,

SEC 1 Skill Enhanceme nt course	SEC 1 Digital fluency Vermiculture (2)		Student must have studied Biology or equivalent subjects in Class 12.		Lectures/Videos/ Seminars/Case study/Project/ Group discussion/Proble m Solving/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Ev aluation/ Analysis of result/ Application of Heutagogy,
2 Semester A2 Major course	Biochemistry and Physiology (4)	 In depth understanding of structure of biomolecules like proteins, lipids and carbohydrates. The thermodynamics of enzyme catalyzed reactions. To know various Physiological processes of animals. 	Student must have studied Biology or equivalent subjects in Class 12.	A2 Lab on Biochemistry, Physiology and Hematology (2)	Lectures/Videos/ Seminar/Case study/Project/ Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Ev aluation/ Analysis of result/ Application of Heutagogy,
2 Semester B2 Minor course	Biology of Chordates (4)	 Learn the systematics and biology of Chordates through their adaptive features. Study the functional biology of Chordates through their body organization. Comprehend identification of Chordate species and their evolutionary relationships. 	Student must have studied Biology or equivalent subjects in Class 12.	Lab on Biology of Chordates (2)	Lectures/Videos/ Seminar/Case study/Project/ Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Ev aluation/ Analysis of result/ Application of Heutagogy,
2 Semester OE2 Open Elective course	Parasitology (3)		Student must have studied Biology or equivalent subjects in Class 12.		Lectures/Videos/ Seminar/Case study/Project/ Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Ev aluation/ Analysis of result/ Application of Heutagogy,
2 Skill Enhanceme nt course	Environmental Studies Sericulture (2)	 Sericulture is an agro-based industry which gives economic empowerment to the students. Sericulture may be taken up as a small scale industry by the small farmers and unemployed youth. Get jobs in teaching profession, silk board and other Govt. institutions as technicians. 	Student must have studied Biology or equivalent subjects in Class 12.		Lectures/Videos/ Seminar/Case study/Project/ Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Ev aluation/ Analysis of result/ Application of Heutagogy,

	EXIT OPTION WITH CERTIFICATE (50 CREDITS)							
3 A3 Major Core Course	Molecular Biology Bioinstrumentation & Techniques in Biology (4)		Certificate Course in Zoology	Lab on Molecular Biology Bioinstrumentation & Techniques in Biology (2)	Group discussion/Form ative Assessment/ Summative Assessment	Formative and Summative Assessment/Eva luation/Analysis of result/ Application of Heutagogy,		
3 B3 Minor Core Course	Comparative Anatomy and Microanatomy (4)		Certificate Course in Zoology	Lab on Comparative Anatomy and Microanatomy (2)	Lectures/Videos / Seminars/Case study/Project/ Group discussion/Form ative Assessment/ Summative Assessment	Formative and Summative Assessment/Ev aluation/ Analysis of result/ Application of Heutagogy,		
3 OE-3 Open Elective course	Endocrinology (3)		Certificate Course in Zoology		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/ Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Eva luation/Analysis of result/ Application of Heutagogy,		
3 Semester Skill Enhanceme nt course	SEC 3 Artificial Intelligence Apiculture (2)		Certificate Course in Zoology		Lectures/Videos / Seminars/Case study/Project/ Group discussion/ Visit To Industry/ Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Ev aluation/ Analysis of result/ Application of Heutagogy,		
4 A4 Major Core curse	Gene Technology, Immunology and Computational Biology (4)		Certificate Course in Zoology	Lab on Genetic Engineering And Counselling (2)	Lectures/Videos / Seminars/Case study/Project/ Group discussion/ Visit to industry/ Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Eval uation/ Analysis of result/ Application of Heutagogy,		
4 B4 Minor Core Course	Cell Biology and Genetics (4)		Certificate Course in Zoology	Lab on Cell Biology and Genetics (2)	Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to industry/ Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Eval uation/ Analysis of result/ Application of Heutagogy,		

4 Sem OE 4 Open Elective Course 4 Semester Skill Enhanceme nt course	Animal Behaviour (3) Constitute of India (2) Poultry	Certific Course Zoolog	a in gy cate		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/ Formative Assessment/ Summative Assessment Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/	Formative and Summative Assessment/Eval uation/ Analysis of result/ Application of Heutagogy, Formative and Summative Assessment/Eval uation/ Analysis of result/ Application of
					Formative Assessment/ Summative Assessment	Heutagogy,
]	EXIT OPTION WITH I	DIPLO	OMA (100 CREDIT	S)	
5 A5 Major Core Course	Non-Chordates and Economic Zoology (4)	Diplo in Zoolo	ogy 1	Lab on Non- Chordates and Economic Zoology (2)	Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit toZoo/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Eva luation/ Analysis of result/ Application of Heutagogy,
5 A6 Major Core Course	Chordates and Comparative Anatomy (3)	Diplo in Zoold	ogy a	Lab on Chordates (Virtual Dissection) and Comparative Anatomy (2)	Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Zoo/ Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Eva luation/ Analysis of result/ Application of Heutagogy,
5 B5 Minor Core Course	Animal Physiology and Animal Biotechnology (3)	Diplo in Zoolo	ogy	Lab on Animal Physiology and Animal Biotechnology (2)	Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Zoo/ Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Eval uation/ Analysis of result/ Application of Heutagogy,
5 DSEC1	Vocational -1 Aquatic Biology (3)	Diplor in Zoold			Lectures/Videos / Seminars/Case study/Project/ Group discussion/ Visit to Industry/ Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Eval uation/ Analysis of result/ Application of Heutagogy,

5 SEC 3 Skill Enhanceme	Cyber Security Integrated Animal Rearing	Diploma in Zoology		Lectures/Videos / Seminars/Case study/Project/	Formative and Summative Assessment/Eval
nt course	(2)			Group discussion/Visit to Industry/Formati ve Assessment/ Summative Assessment	uation/ Analysis of result/ Application of Heutagogy,
6 A7 Major Core Course	Evolutionary and Developmental Biology (3)	Diploma in Zoology	Lab on Evolutionary and Developmental Biology (2)	Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Institute/Formati ve Assessment/ Summative Assessment	Formative and Summative Assessment/Eval uation/ Analysis of result/ Application of Heutagogy
6 A8 Major Core Course	Environmental Biology, Wildlife management and Conservation (3)	Diploma in Zoology	Lab on Environmental Biology, Wildlife management and Conservation (2)	Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Zoo/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Eval uation/ Analysis of result/ Application of Heutagogy
6 B6 Minor Core Course	Animal Behaviour (3)	Diploma in Zoology	Lab on Animal Behaviour (2)	Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Zoo/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Eval uation/ Analysis of result/ Application of Heutagogy
6 DSEC	Vocationa-2 Entomology 3 Internship (2)	Diploma in Zoology		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/ Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Eval uation/ Analysis of result/ Application of Heutagogy
6 Skill Enhancemen t Course	SEC 4 Professional Communication Ornamental Fish Culture (2)	Diploma in Zoology		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/ Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Eval uation/ Analysis of result/ Application of Heutagogy

	EXIT C	OPTION WITH B. Sc. D	DEGREE (142 CREI	DITS)	
7 A9 Major Core Course	Ethology (3)	Degree in Bachelor Of Science in Zoology	Lab on Ethology @2)	Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Zoo/ Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Eval uation/ Analysis of result/ Application of Heutagogy,
7 A8 Major Core Course	Evolution and Zoogeography (3)	Degree in Bachelor Of Science in Zoology	Lab on Evolution and Zoogeography (2)	Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Zoo/ Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Eval uation/ Analysis of result/ Application of Heutagogy
7 A9 Major Core Course	Genetics and Computational Biology (3)	Degree in Bachelor Of Science in Zoology	Lab on Advanced Genetics and Computational Biology (2)	Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/ Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Eval uation/ Analysis of result/ Application of Heutagogy
7	RESEARCH METHODOLO GY (3)	Degree in Bachelor Of Science in Zoology		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to research lab/Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Eval uation/ Analysis of result/ Application of Heutagogy
7 DSEC	Zoology E-1 (3) Radiation Biology	Degree in Bachelor Of Science in Zoology		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/ Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Ev aluation/ Analysis of result/ Application of Heutagogy,
7DSEC	Zoo Management Zoology E-2 (3)	Degree in Bachelor Of Science in Zoology		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/ Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Ev aluation/ Analysis of result/ Application of Heutagogy,

8 A12 Major Core Course	Immunology and Stem Cell Biology (3)	Degree in Bachelor Of Science in Zoology	Lab on Immunology and Stem Cell Biology 2	Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/ Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Ev aluation/ Analysis of result/ Application of Heutagogy,
8 A13 Major Core Course	Advanced Molecular Biology and Biostatistics (3)	Degree in Bachelor Of Science in Zoology		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/ Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Ev aluation/ Analysis of result/ Application of Heutagogy,
8 A 14 Major Core Course	Genomics and Proteomics (3)	Degree in Bachelor Of Science in Zoology		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/ Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Ev aluation/ Analysis of result/ Application of Heutagogy,
8	RESEARCH PROJECT (6)	Degree in Bachelor Of Science in Zoology		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/ Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Eval uation/ Analysis of result/ Application of Heutagogy
8DSEC1	Any one of the below 4 choice E-3 Neurosciences (3)	Degree in Bachelor Of Science in Zoology		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/ Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Ev aluation/ Analysis of result/ Application of Heutagogy,
8DSEC2	E-3 Parasitology(3)	Degree in Bachelor Of Science in Zoology		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/ Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Ev aluation/ Analysis of result/ Application of Heutagogy,
8DSEC3	E-3 Animal Experimentation and Ethics(3)	Degree in Bachelor Of Science in Zoology		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/ Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Ev aluation/ Analysis of result/ Application of Heutagogy,

8DSEC4	E-3 Behavioural Biology(3)		Degree in Bachelor Of Science in Zoology		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/ Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Ev aluation/ Analysis of result/ Application of Heutagogy,
	EXIT O	PTION WITH	I B. Sc. HONO	URS DEGREE (184	CREDITS)	
9 A15 Major Core Course	Animal Biotechnology and Genetic Engineering (3)		Degree in Bachelor of Science Honors	Lab on Animal Biotechnology and Genetic Engineering (2)	Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/ Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Ev aluation/ Analysis of result/ Application of Heutagogy,
9 A 16 Major Core Course	Microanatomy Histochemistry and Histopathology (3)		Degree in Bachelor of Science Honors	Lab on Microanatomy, Histochemistry and Histopathology (2)	Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/ Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Eval uation/ Analysis of result/ Application of Heutagogy
9 A 17 Major Core course	Molecular Endocrinology (3)		Degree in Bachelor of Science Honors	Lab on Molecular Endocrinology (2)	Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Lab/ Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Eval uation/ Analysis of result/ Application of Heutagogy,
9 A18	Research methodology (3) of 7 th sem) Applied Zoology (In Place of		Degree in Bachelor of Science Honors		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/ Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Eval uation/ Analysis of result/ Application of Heutagogy,
9DSEC1	E-1 Animal Biotechnology (3)		Degree in Bachelor of Science Honors		Lectures/Videos / Seminars/Case study/Project/ Group discussion/Visit to Industry/ Formative Assessment/ Summative Assessment	Formative and Summative Assessment/Eval uation/ Analysis of result/ Application of Heutagogy,

	DECEADOU	D- and the	Loture / T' 1	Formation 1
10 DSEC 1	RESEARCH	Degree in	Lectures/Videos	Formative and
	PROJECT	Bachelor of	/ Seminars/Case	Summative
	or	Science	study/Project/	Assessment/Eval
	Any two DSEC	Honors	Group	uation/ Analysis
	Or		discussion/Visit	of result/
	INTERNSHIP		to Industry/	Application of
	(6)		Formative	Heutagogy,
			Assessment/	
			Summative	
			Assessment	
10 DSEC 2	E-3 Insect Vector	Degree in	Lectures/Videos	Formative and
	& Diseases	Bachelor of	/ Seminars/Case	Summative
	(3)	Science	study/Project/	Assessment/Eval
	(3)	Honors	Group	uation/ Analysis
			discussion/Visit	of result/
			to Industry/	Application of
			Formative	Heutagogy,
			Assessment/	riculagogy,
			Summative	
			Assessment	
10 DSEC 3	E-3 Human	Degree in	Lectures/Videos/	Formative and
TO DSEC 5	Physiology (3)	Bachelor of		Summative
	Thysiology (5)	Science	Seminars/Case	Assessment/Eval
		Honors	study/Project/	uation/ Analysis
			Group	of result/
			discussion/Visit	Application of
			to Industry/	Heutagogy,
			Formative	0.000
			Assessment/	
			Summative	
			Assessment	
10 DSEC 4	E-3 Food,	Degree in	Lectures/Videos	Formative and
	Nutrition &	Bachelor of	/ Seminars/Case	Summative
	Health	Science	study/Project/	Assessment/Eval
	(3)	Honors	Group	uation/ Analysis
			discussion/Visit	of result/
			to Industry/	Application of
			Formative	Heutagogy,
			Assessment/	
			Summative	
			Assessment	
10 Skill	E-3 Animal	Degree in	Lectures/Videos	Formative and
Enhancemen	Breeding	Bachelor of	/ Seminars/Case	Summative
t	Techniques	Science	study/Project/	Assessment/Eval
	(3)	Honors	Group	uation/ Analysis
	<u>\-</u> /		discussion/Visit	of result/
			to Industry/	Application of
			Formative	Heutagogy,
			Assessment/	mulagogy,
			Summative	
			Assessment	
			Assessment	

EXIT OPTION WITH M. Sc. DEGREE (268 CREDITS)

Proposed Course content under New Education Policy Year 2021-22 for

I Semester BSc Zoology

Core Course Content

Course Title/Code: Cytology, Genetics and Infectious Diseases	Course Credits: 4
Course Code: DSCC5Z00T1	L-T-P per week: 4-0-0
Total Contact Hours: 56	Duration of ESA: 3 Hours
Formative Assessment Marks: 40	Summative AssessmentMarks:60
Model Syllabus Authors:	

Core Course prerequisite: To study Zoology in undergraduate, student must have studied Biology or equivalent subject in Class 12.

Course Outcomes (COs):

At the end of the course the student should be able to understand:

- 1. The structure and function of the cell organelles.
- 2. The chromatin structure and its location.
- 3. The basic principle of life, how a cell divides leading to the growth of an
- 4. Organism and also reproduces to form a new organisms.
- 5. How a cell communicates with its neighboring cells.
- 6. The principles of inheritance, Mendel's laws and the deviations.
- 7. How environment plays an important role by interacting with genetic factors.
- 8. Detect chromosomal aberrations in humans and study of pedigree analysis.

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs)

Course Outcomes (COs) / Program Outcomes (POs)	CC T1	CC 2	CC 3	CC 4	CC 5	CC 6	CC 7	CC 8	CC 9	CC 10	CC 11
I Core competency	X										
II Critical thinking	X										
III Analytical reasoning	Х										
IV Research skills	Х										
V Team work	X										

Note: Course Articulation Matrix relates course outcomes of course with the corresponding program outcomes whose attainment is attempted in this course. Mark _X' in the intersection cell if a course outcome addresses a particular program outcome.

Semester I- Zoology Core Course I Content:

	Content	Hours		
	Unit I			
Chapter 2	Structure and Function of Cell Organelles I in Animal cell Plasma membrane: chemical structure—lipids and proteins Endomembrane system: protein targeting and sorting, transport, endocytosis and			
• C	Structure and Function of Cell Organelles II in Animal Cell Cytoskeleton: microtubules, microfilaments, intermediate filaments Mitochondria: Structure, oxidative phosphorylation; electron transport system Peroxisome and Ribosome: structure and function			
	Unit II	14		
• S • C • I	5. Nucleus and Chromatin Structure Structure and function of nucleus in eukaryotes Chemical structure and base composition of DNA and RNA DNA supercoiling, chromatin organization, structure of chromosomes Types of DNA and RNA			
• C • I • Signal	Cell cycle, Cell Division and Cell Signaling Cell division: mitosis and meiosis ntroduction to Cell cycle and its regulation, apoptosis gnal transduction: intracellular 11 signaling and cell surface receptors, via G-protein inked receptors cell-cell interaction: cell adhesion molecules, cellular junctions			

	Unit III	14
Cha	pter 5. Mendelism and Sex Determination	
•	Basic principles of heredity: Mendel's laws- monohybrid cross and hybrid cross	
•	Complete and Incomplete Dominance	
•	Penetrance and expressivity	
•	Genetic Sex-Determining Systems, Environmental Sex Determination, Sex Determination	
	and mechanism in Drosophila melanogaster.	
•	Sex-linked characteristics in humans and dosage compensation	
Cha	pter 6. Extensions of Mendelism, Genes and Environment	
•	Extensions of Mendelism: Multiple Alleles, Gene Interaction.	
•	The Interaction Between Sex and Heredity: Sex-Influenced and Sex-Limited	
	Characteristics	
•	Cytoplasmic Inheritance, Genetic Maternal Effects.	
•	Interaction between Genes and Environment: Environmental Effects on Gene Expression,	
	Inheritance of Continuous Characteristics.	
	Unit IV	14
Cha	pter 7. Human Chromosomes and Patterns of Inheritance	
•	Patterns of inheritance: autosomal dominance, autosomal recessive, X-linked recessive,	
	X-linked dominant.	
•	Chromosomal anomalies: Structural and numerical aberrations with examples.	
•	Human karyotyping and Pedigree analysis.	
Cha	pter 8. Infectious Diseases	1
•	Introduction to pathogenic organisms: viruses, bacteria, fungi, protozoa and worms.	
•	Structure, life cycle, pathogenicity, including diseases, causes, symptoms and control of common parasites: <i>Trypanosoma</i> , <i>Giardia and Wuchereria</i> .	

Suggested Readings :

- 1. Lodish et al: Molecular Cell Biology: Freeman & Co, USA(2004).
- 2. Alberts et al: Molecular Biology of the Cell: Garland(2002).
- 3. Cooper: Cell: A Molecular Approach: ASM Press(2000).
- 4. Karp: Cell and Molecular Biology: Wiley (2002). Pierce B. Genetics. Freeman(2004).
- 5. Lewin B. Genes VIII. Pearson (2004).
- 6. Watson et al. Molecular Biology of the Gene. Pearson(2004).
- 7. Thomas J. Kindt, Richard A. Goldsby, Barbara A. Osborne, Janis Kuby- Kuby Immunology. W H Freeman (2007).
- 8. Delves Peter J., Martin Seamus J., Burton Dennis R., Roitt Ivan M. Roitt's Essential Immunology, 13th Edition. Wiley Blackwell(2017).
- 9. Principles of Genetics by B. D. Singh
- 10. Cell-Biology by C. B. Pawar, Kalyani Publications
- **11.** Economic Zoology by Shukla and Upadhyaya

Pedagogy: Written Assignment/Presentation/Project / TermPapers/Seminar

Formative Assessment	
Assessment Occasion	Weightage in Marks
House Examination/Test	20
Written Assignment/Presentation/Project / Term Papers/Seminar	15
Class performance/Participation	05
Total	40

Date: Co-ordinator

Zoology Core Lab Course Content

Semester I

Course Title: Cell Biology & Cytogenetics Lab	Course Credits:2
Course Code: DSCC5Z00P1	L-T-P per week: 0-0-4
Total Contact Hours: 56	Duration of ESA: 3 Hours
Formative Assessment Marks: 15	Summative Assessment Marks: 35
Model Syllabus Authors:	

Course Outcomes (COs):

At the end of the course the student should be able to:

- 1. To use simple and compound microscopes.
- 2. To prepare stained slides to observe the cell organelles.
- 3. To be familiar with the basic principle of life, how a cell divides leading to the growth of an organism and also reproduces to form new organisms.
- 4. The chromosomal aberrations by preparing karyotypes.
- 5. How chromosomal aberrations are inherited in humans by pedigree analysis in families.
- The antigen-antibody reaction.

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs)

Course Outcomes (COs) / Program Outcomes (POs)	CC P1	CC 2	CC 3	CC 4	CC 5	CC 6	CC 7	CC 8	CC 9	CC 10	CC 11
I Core competency	Х										
II Critical thinking	Х										
III Analytical reasoning	Х										
IV Research skills	X										
V Team work	Х										

Note: Course Articulation Matrix relates course outcomes of course with the corresponding program outcomes whose attainment is attempted in this course. Mark _X' in the intersection cell if a course outcome addresses a particular program outcome.

Lab Course Content

List of labs to be conducted	56 hrs.
 Understanding of simple and compound microscopes. To study different cell types such as buccal epithelial cells, neurons, striated muscle cells using 3. Methylene blue/any suitable stain (virtual/ slaughtered tissue). To study the different stages of Mitosis in root tip of <i>Allium cepa</i>. To study the different stages of Meiosis in grasshopper testis (virtual). To check the permeability of cells using salt solution of different concentrations. Study of parasites in humans (e.g. Protozoans, Helminthes in compliance with examples beingstudied in theory) permanent microslides. To learn the procedures of preparation of temporary and permanent stained slides, with available mounting material. Study of mutant phenotypes of <i>Drosophila</i> sp. (from Cultures or Photographs). Preparation of polytene chromosomes (Chironomus larva or Drosophila larva). Preparation of human karyotype and study the chromosomal structural and numerical aberrations from the pictures provided. (Virtual/optional). To prepare family pedigrees. https://www.vlab.co.in https://zoologysan.blogspot.com www.onlinelabs.in www.powershow.com https://vlab.amrita.edu<u>https://sites.dartmouth.edu/</u> 	

Suggested Readings:

- 1. Lodish et al: Molecular Cell Biology: Freeman & Co, USA(2004).
- 2. Alberts et al: Molecular Biology of the Cell: Garland(2002).
- 3. Cooper: Cell: A Molecular Approach: ASM Press(2000).
- 4. Karp: Cell and Molecular Biology: Wiley (2002). Pierce B. Genetics. Freeman(2004).
- 5. Thomas J. Kindt, Richard A. Goldsby, Barbara A. Osborne, Janis Kuby- Kuby Immunology. W H Freeman(2007).
- 6. Kesar, Saroj and Vasishta N.2007 Experimental Physiology: Comprehensive Manual. Heritage Publishers, NewDelhi.

Pedagogy: Written Assignment/Presentation/Project / Term Papers/Seminar

Formative Assessment	
Assessment Occasion	Weightage in Marks
House Examination/Test	05
Written Assignment/Presentation/Project / Term Papers/Seminar	05
Class performance/Participation	05
Total	15
Date: Course Co-ordinator	Subject committee Chairperson

Date:

Course Co-ordinator

Minor Course Content

Semester: I Semester, B. Sc., (Hons) Zoology

Course Title: BIOLOGY OF NON-CHORDATES	Course Code: MDC5ZOOT1
Course Type: Minor Discipline Core Theory, L-T-P: 4-0-0	Course Credits: 4
Total Contact Hours: 56	Duration of ESA: 3 Hrs
Formative Assessment Marks: 40	Summative Assessment Marks: 60
Model Syllabus Authors:	

Course Outcomes (COs):

At the end of the course the student should be able to:

- 1. Learn the structural biology of non-chordates through their adaptive features.
- 2. Study the functional biology of non-chordates through their body organization and its function.
- 3. Comprehend identification of species and their evolutionary relationships.
- 4. Enhancement of research skills like critical thinking.
- 5. Develop abilities required for industrial employment as well as self-employment.

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs)

Course Outcomes (COs) /(POs)	MDC5ZOO T1	MDC5ZOO T2	MDC5ZOO T3	MDC5ZOO T4	MDC5ZOO T5	MDC5ZOOT6
I Core competency	Х					
II Critical thinking	Х					
III Analytical reasoning	Х					
IV Research skills	Х					
V Team work	Х					

Course Articulation Matrix relates course outcomes of course with the corresponding program outcomes whose attainment is attempted in this course. Mark _X' in the intersection cell if a course outcome addresses a particular program outcome.

Course Content	Hrs
Unit I	14
Chapter 1. Animal Architecture- Body symmetry- asymmetry, radial, biradial and bilateral symmetry with suitable example and Significance. Body organization- Protoplasmic, cellular, tissue and organ level of organization with suitable examples and Significance. Diploblasty (apparent and absolute) and Triploblasty with suitable Examples and Significance.	
 Coelom- Acoelom, Pseudocoelom, and Eucoelom with suitable examples and Significance. Metamerism- Psuedometamerism (Strobilization), Eumetamerism with suitable examples and Significance. Cephalization- origin and significance. Chapter 2. General characters and classification of major Invertebrate phyla- Protozoa, Porifera, Coelenterata, Helminthes, Annelida, Arthropoda, Mollusca and Echinodermata up to the level of classes with suitable examples. 	

Unit II	14
Chapter 3. Diversity of life sustaining systems in nonchordates: (with an example for	
each type of system)	
Locomotion: Protozoa- amoeboid (Sol-Gel theory), Flagellar, euglenoid and ciliary	
movements. Hydrostatic movements in Annelida-Earthworm and Echinodermata-starfish.	
Nutrition: In Protozoa.	
Feeding apparatus and mechanism: In Annelida-filter feeding, Arthropoda-Prawn,	
Mollusca-Pila and Echinodermata-Sea Star.	
Respiration: In Protozoa-diffusion, Helminthes-parasitic, Annelida-cutaneous, Arthropoda	
(any one type), Mollusca (Gill) and Echinodermata (Dermal papillae and Tube feet).	
Circulation: In Protozoa (cyclosis), Annelida- Earthworm, Arthropoda-Prawn, Mollusca-	
Pila and Echinodermata- Sea Star.	
Osmoregulation and excretion: In Protozoa-Contractile vacuoles, Platyhelminthes- Flame cells, Annelida-Nephredia and Arthropoda-Green glands.	
Unit III	14
Chapter 4. Diversity of coordinating systems and generative systems in nonchordates:	
(with an example for each type of system)	
Nervous system in Coelenterata, Platyhelmintes, Annelida, Arthropoda, Mollusca and	
Echinodermata.	
Neuroendocrine system and pheromones in Insecta.	
Sense organs: Mechanoreceptors, Photoreceptors, Chemoreceptors, thigmoreceptors,	
rheoreceptors and proprioreceptors.	
Reproduction: Asexual and sexual reproduction in Protozoa, Porifera, Coelenterate,	
Annelida and Echinodermata.	
Metamorphosis in Insecta. Larval forms of Coelenterata, Annelida and Echinodermata.	
Unit IV	14
	07
Chapter 5. Beneficial non-chordates:	07
Non-chordates used as food; Arthropoda and Mollusca.	
Non-chordates in Industry and Industrial products; Silkworm-silk, Lac Insect-shellac, Honey bees-bee wax, Pearl Oysters- pearls, Corals, sponges, shells dyes and pigments.	
Non-chordates in medicinal use-Leeches, Maggot larva and honey.	
Non-chordates in agriculture-earthworms, pollinators and pest controllers.	
Non-chordates in food chain and as scavengers.	
Chapter 6. Harmful non-chordates	
Parasitic Platyhelminthes.	07
Soil Nematodes.	
Agricultural, veterinary and human pests of Arachnida. Agricultural, veterinary and human pests of Arthropoda.	
Agricultural, veterinary and numan desis of Arthropoda.	

Topics Suggested for Assignment/ Formative Assessment:

Animal connecting links. 2. Polymorphism 3. Parasitic adaptations 4. Metamorphosis 5.Freshwater sponges 6. Molluscans of industrial value 7. Coral reefs and their role in ecosystem generation 8. Invertebrate minor phyla 9. Regeneration in sponges and *Planaria*10.Soil and water protozoa

Recommended Books:

•Barnes, R. S. K.; Calow, P.; Olive, P. J. W.; Golding, D. W.; Spicer, J. I. (2002) The Invertebrates: a Synthesis, Blackwell Publishing.

•Hickman, C.; Roberts, L.S.; Keen, S.L.; Larson, A. and Eisenhour, D. (2018) Animal Diversity, McGraw-Hill.

•Holland, P. (2011) The Animal Kingdom: A Very Short Introduction, Oxford University Press.

•Barrington, E.J.W. (1979) Invertebrate Structure and Functions. II Edition. E.L.B.S. and Nelson.

•Boradale, L.A. and Potts, E.A. (1961) Invertebrates: A Manual for the use of Students. Asia Publishing Home.

•Bushbaum, R. (1964) Animals without Backbones. University of Chicago Press.

Web Sources:

Animal Diversity (https://swayam.gov.in/courses/5686-animal-diversity)

Advances in Animal Diversity, Systematics and Evolution

(https://swayam.gov.in/courses/5300-zoology)

ePGPathshala (MHRD)Module 10, 18, 19 of the paper P-08 (Biology of Parasitism) <u>https://epgp.inflibnet.ac.in/ahl.php?csrno=35</u>

Pedagogy: Lectures, Presentations, videos, Assignments and Weekly Formative Assessment Tests.

Formative Assessment				
Assessment Occasion	Weightage in Marks			
Assignment/ Field Report/ Project	15 Marks			
Test	20 Marks			
Participation in class	05 marks			
Total	40 Marks			

Date:

Co-Ordinator

Minor Course Lab Content

Semester: I

Course Title: Lab on BIOLOGY OF NON-CHORDATES	Course Credits: 02
Course Type: Minor Discipline Core Practical, L-T-P: 0-0-4	Corse Code: MDC5ZOOP1
Total Contact Hours: 56	Duration of ESA: 03 Hours
Formative Assessment Marks: 15	Summative Assessment Marks: 35
Model Syllabus Authors:	

Course Outcomes (COs):

At the end of the course the student should be able to:

- 1. Understand basics of classification of non-chordates.
- 2. Learn the diversity of habit and habitat of these species.
- 3. Develop the skills to identify different classes and species of animals.
- 4. Know uniqueness of a particular animal and its importance
- 5. Enhancement of basic laboratory skill like keen observation and drawing.

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs)

Course Outcomes (COs) / Program Outcomes (POs)	MDC5ZOO P1	MDC5ZOOP 2	MDC5ZOOP 3	MDC5ZOOP 4	MDC5ZOOP 5	MDC5ZOOP 6
I Core competency	Х					
II Critical thinking	Х					
III Analytical reasoning	Х					
IV Research skills	Х					
V Team work	Х					

Course Articulation Matrix relates course outcomes of course with the corresponding program outcomes whose attainment is attempted in this course. Mark _X' in the intersection cell if a course outcome addresses a particular program outcome.

MDC Lab I Course Content

	List of labs to be conducted	Hours
1.	Preparation and observation of protozoan culture.	56
2.	Protozoa: Systematics of Amoeba, Euglena, Noctiluca, Paramecium and Vorticella	
	(Permanent slides).	
3.	Porifera: Systematics of Sycon, Euplectella, Hyalonema, Spongillaand	
	<i>Euspongia</i> (Specimens). Study of permanent slides of T.S of <i>Sycon</i> , spicules and gemmules.	
4.	Cnidaria: Systematics of Aurelia and Metridium(Specimens). Slides of Hydra,	
	<i>Obelia</i> -polyp and medusa, and <i>Ephyra</i> larva, T.S. of <i>Metridium</i> passing through mesenteries.	
5.	Study of Corals-Astraea, Fungia, Meandrina, Corallium, Gorgonia, Milleporaand	
	Pennatula.	

6	Helminthes: Systematics of Planaria, Fasciola hepatica and Taeniasolium, Ascaris-	
0.	•	
	Male and female(Specimens). Slides of T.S. of <i>Planaria</i> , T.S of male and female	
7	Ascaris,	
1.	Annelida: Systematics of <i>Nereis, Heteronereis, Sabella, Aphrodite</i> (Specimens).	
0	Slide of T.S. of Earth worm through typhlosole.	
ð.	Arthropoda: Systematics of Panaeus, Palaemon, Astracus, Scorpion, Spider,	
	Limulus, Peripatus, Millipede, Centipede, Praying mantis, Termite Queen, Moth,	
	Butterfly, Dung beetle/Rhinocerous beetle (Any six specimens).Slide of Larvae-	
0	Nauplius, Zoea, Mysis.	
9.	Mollusca: Systematics of Chiton, Mytilus, Aplysia, Pila, Octopus, Sepia, Glochidium	
10	larva (Specimens).	
10.	Shell Pattern-Unio, Ostrea, Cypria, Murex, Nautilus, Patella, Dentalium, Cuttle	
	bone.	
11.	Echinodermata: Systematics of Sea star, Brittle star, Sea Urchin, Sea cucumber,	
	Sea lilly (Specimens).Slide of Bipinnaria larva, Echinopluteus larva and Pedicellaria.	
12.	Harmful Nonchordates: Soil Nematodes. Agricultural, veterinary and human pests	
	of Arachnida. Agricultural, veterinary and human pests of Arthropoda.	
	Beneficial Nonchordates:	
	Sericulture: Life cycle of <i>Bombyxmori</i> , Uzi fly, Cocoon, Raw silk.	
	Apiculture: Any 2 Species of honey bee, bee wax.	
	Pearl Culture: Pearl Oyster and Natural Pearls.	
17.	Virtual Dissection/Cultured specimens: Earthworm – Nervous system Leech-	
	Digestive System	
18.	Virtual Dissection/ Cultured specimens: Prawn - Nervous system. Cockroach-	
	Salivary Apparatus and Digestive system.	

Recommended Books:

•Barnes, R. S. K.; Calow, P.; Olive, P. J. W.; Golding, D. W.; Spicer, J. I. (2002) The Invertebrates: a Synthesis, Blackwell Publishing.

Hickman, C.; Roberts, L.S.; Keen, S.L.; Larson, A. and Eisenhour, D. (2018) AnimalDiversity, McGraw-Hill.
Holland, P. (2011) The Animal Kingdom: A Very Short Introduction, OxfordUniversity Press.

•Barrington, E.J.W. (1979) Invertebrate Structure and Functions. II Edition. E.L.B.S.and Nelson.

•Boradale, L.A. and Potts, E.A. (1961) Invertebrates: A Manual for the use of Students. Asia PublishingHome.

•Bushbaum, R. (1964) Animals without Backbones. University of Chicago Press.

Web References:

Anatomy of earthworm: The dissection works (CD); <u>www.scienceclass.com</u>, <u>www.neosci.com</u> Cockroach dissection-<u>www.ento.vt.edu</u>

Pedagogy: Lectures, Presentations, videos, Labs, Assignments, Tests, Individual or group Field oriented Project Report on, Visit to one research institute/ one wild life sanctuary / museum / zoo.

TOPICS RECOMMENDED FOR PROJECT/ MONOGRAPH PREPARATION

General account of protozoan ooze. Monograph on sea anemones. Monograph on polychaetes. Monograph on leeches.

Formative Assessment			
Assessment Occasion	Weightage in Marks		
Assignment/Monograph	05		
Test	05		
Participation in class	05		
Total	15		

Date:

Co-Ordinator

Subject Committee Chairperson

Open Elective Course Content

Semester: I

Course Title: Economic Zoology Course Code: OEC5ZOOT1	Course Credits:3
Total Contact Hours: 42	Duration of ESA: 3 Hours
Formative Assessment Marks: 40	Summative Assessment Marks:60
Model Syllabus Authors:	

Course Outcomes (COs):

At the end of the course the student will be able to:

- 1. Gain knowledge about silkworms rearing and their products.
- 2. Gain knowledge in Bee keeping equipment and apiary management.
- 3. Acquaint knowledge on dairy animal management, the breeds and diseases of cattle and learn the testing of egg and milk quality.
- 4. Acquaint knowledge about the culture techniques of fish and poultry.
- 5. Acquaint the knowledge about basic procedure and methodology of vermiculture.
- 6. Learn various concepts of lac cultivation.
- 7. Students can start their own business i.e. self-employments.
- 8. Get employment in different applied sectors

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs)

Course Outcomes (COs) / Program Outcomes (POs)	CC 1	CC 2	CC 3	CC 4	CC 5	CC 6	CC 7	CC 8	CC 9	CC 10	CC 11	CC 12
I Core competency	Χ											
II Critical thinking	Х											
III Analytical reasoning	Х											
IV Research skills	Х											
V Team work	Χ											

Course Articulation Matrix relates course outcomes of course with the corresponding program outcomes whose attainment is attempted in this course. Mark _X' in the intersection cell if a course outcome addresses a particular program outcome.

Course Content

Content	Hrs
Unit I	14
Chapter 1. Sericulture:	
History and present status of sericulture in India	
 Mulberry and non-mulberry species in Karnataka and India 	
Mulberry cultivation	
Morphology and life cycle of <i>Bombyxmori</i>	
Silkworm rearing techniques: Processing of cocoon, reeling	
• Silkworm diseases and pest control	
Chapter 2. Apiculture:	
 Introduction and present status of apiculture Species of honey bees in India, life cycle of <i>Apisindica</i> 	
 Species of honey bees in hidra, the cycle of <i>Apismatca</i> Colony organization, division of labour and communication 	
 Bee keeping as an agro based industry; methods and equipments: indigenous methods, 	
extraction appliances, extraction of honey from the comb and processing	
• Bee pasturage, honey and bees wax and their uses	
Pests and diseases of bees and their management	
Unit II	14
Chapter 3. Live Stock Management:	
• Dairy: Introduction to common dairy animals and techniques of dairy management	
• Types, loose housing system and conventional barn system; advantages and limitations	
of dairy farming	
• Establishment of dairy farm and choosing suitable dairy animals-cattle	
• Cattle feeds, milk and milk products	
• Cattle diseases	
• Poultry: Types of breeds and their rearing methods	
Feed formulations for chicks	
Nutritive value of egg and meat	
• Disease of poultry and control measures Chapter 4. Aquaculture:	
Aquaculture in India: An overview and present status and scope of aquaculture	
 Aquaculture in India. An overview and present status and scope of aquaculture Types of aquaculture: Pond culture: Construction, maintenance and management; carp 	
culture, shrimp culture, shellfish culture, composite fish culture and pearl culture	
Unit - 3	14
	14
Chapter 5. Fish culture: Common fishes used for culture.	
 Fishing crafts and gears. 	
 Ornamental fish culture: Fresh water ornamental fishes- biology, breeding techniques 	
 Construction and maintenance of aquarium: Construction of home aquarium, materials 	
used, setting up of freshwater aquaria, aquarium plants, ornamental objects, cleaning the	
aquarium, maintenance of water quality. control of snail and algal growth.	
Modern techniques of fish seed production	
Chapter 6. Prawn culture:	
• Culture of fresh and marine water prawns.	
• Preparation of farm.	
Preservation and processing of prawn, export of prawn.	
Chapter 7. Vermiculture:	
Scope of vermiculture.	
 Types of earthworms. Habit categories - opigaie and opagie and opagie; indigenous and evotic species 	
• Habit categories - epigeic, endogeic and anecic; indigenous and exotic species.	
Methodology of vermicomposting: containers for culturing, raw materials required,	
preparation of bed, environmental pre-requisites, feeding, harvesting and storage of	
vermicompost.	
A (Vantages of Vermicomposing)	1
Advantages of vermicomposting.Diseases and pests of earthworms.	

Chapter 8.Lac Culture:

- History of lac and its organization, lac production in India.
- Life cycle, host plants and strains of lac insect.
- Lac cultivation: Local practice, improved practice, propagation of lac insect, inoculation period, harvesting of lac.
- Lac composition, processing, products, uses and their pests.

Text Books

Suggested Readings:

- 1. Eikichi, H. (1999). Silkworm Breeding (Translated from Japanese). Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi.
- 2. Ganga, G. (2003). Comprehensive Sericulture Vol-II: Silkworm Rearing and Silk Reeling.
- 3. Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi.
- 4. Mahadevappa, D., Halliyal, V.G., Shankar, D.G. and Bhandiwad, R., (2000). Mulberry Silk
- 5. Reeling Technology Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi.
- 6. Roger, M (1990). The ABC and Xyz of Bee Culture: An Encyclopedia of Beekeeping, Kindle Edition.
- 7. Shukla and Upadhyaya (2002). Economic Zoology, Rastogi Publishers
- 8. YadavManju (2003). Economic Zoology, Discovery Publishing House.
- 9. JabdePradip V (2005). Textbook of applied Zoology, Discovery Publishing House, New Delhi.
- 10. Cherian & Ramachandran Bee keeping in-South Indian Govt. Press, Madras.
- 11. Sathe, T.V. Vermiculture and Organic farming.
- 12. Bard. J (1986). Handbook of Tropical Aquaculture.
- 13. Santhanam, R. A. Manual of Aquaculture.
- 14. Zuka. R.1 and Hamiyn (1971). Aquarium fishes and plants
- 15. Jabde, P.V. (2005) Text Book of Applied Zoology: Vermiculture, Apiculture, Sericulture, Lac culture.
- 16. Animal Disease- Bairagi K. N. Anmol Publications Pvt.Ltd 2014
- 17. Economics Of Aquaculture Singh(R.K.P) Danika Publishing Company 2003
- 18. Applied and Economic Zoology (SWAYAM) web https://swayam.gov.in/nd2_cec20_ge23/preview

Course Books published in English and Kannada may be prescribed by the Universities and College

References

Pedagogy: Chalk and Talk, PPT, Group discussion, Seminar, Field visit

Formative Assessment		
Assessment Occasion	Weightage in Marks	
House Examination/Test	20	
Written Assignment/Presentation/Project / Term Papers/Seminar	15	
Class performance/Participation	05	
Total	40	

Date: Course Co-Ordinator

Skill Enhancement Course in Zoology

Course Content

Semester. I	
Course Title: Vermiculture Course Code: VEC5ZOOP1	Course Credits: 2
Total Contact Hours: 56 Hours	Duration of ESA: 3 Hrs
Formative Assessment Marks: 15	Summative Assessment Marks: 35
Model Syllabus Authors:	

Course Outcomes (COs):

Somostor I

At the end of the course the student:

- 1. Understands the importance of earthworms in maintaining soil quality.
- 2. Learns that the vermicomposting is an effective organic solid waste management method.
- 3. Gets acquainted with the importance of earthworms in agro-based economic activity.
- 4. Vermicomposting leads to organic farming and healthy food production.
- 5. Vermicomposting may be taken up as a small scale industry by the farmers and unemployed youth.
- 6. Get jobs in teaching institutions or vermiculture units as technicians.
- 7. Learn the concept of vermicomposting as bio fertilizers thus student can become an entrepreneur after completion of the course.
- 8. Best opportunity for self-employment and lifelong learning with farmers.

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs)

	se Outcomes (COs) / Program omes (POs)	VEC5ZOO P1	2	3	4	5	6	7	8	9	10	11	12
i	Core competancy.	X											
ii	Critical thinking.	X											
iii	Analytical reasoning.	X											
iv	Research skill.	X											
v	Team work.	X											

Course Articulation Matrix relates course outcomes of course with the corresponding program outcomes whose attainment is attempted in this course. Mark _X⁴ in the intersection cell if a course outcome addresses a particular program outcome.

	List of labs to be conducted	56Hrs
1	Collection of native earth worm species to study habit and habitat.	
2	Keys to identify different species of earth worm.	
3	Externals and Life cycle of <i>Eiseniafetida</i> and <i>Eudriluseugeniae</i> .	
4	Dissection of digestive and reproductive system.	
5	Study of vermicomposting equipments and devices.	
6	Preparation of vermibeds and their maintenance.	
7	Study of different vermicomposting methods.	
8	Harvesting, separation of worms, packaging, transport and storage of varmicompost.	
9	Vermi-wash collection and processing.	
10	Small scale earth worm farming for home gardens and studying the effect of vermicompost on garden plants.	
11	Budget and cost scenario of vermiculture (Project).	
12	Diseases and natural enemies of earth worms and their control measures.	
13	Role of vermitechnology in environmental protection.	
14	Economics and Marketing of vermicompost and vermi wash.	
15	Visit to vermiculture farm to acquaint with latest techniques.	

Course Content

Text Books and references

- 1) Bhatt J.V. & S.R. Khambata (1959) –Role of Earthworms in Agriculture Indian Council of Agricultural Research, New Delhi
- 2) Edwards, C.A. and J.R. Lofty (1977) –Biology of Earthworms Chapman and Hall Ltd., London.
- 3) Lee, K.E. (1985) –Earthworms: Their ecology and Relationship with Soils and Land Use Academic Press, Sydney.
- 4) Dash, M.C., B.K.Senapati, P.C. Mishra (1980) Verms and Vermicomposting Proceedings of the National Seminar on Organic Waste Utilization and Vermicomposting Dec. 5-8, 1984, (Part B), School of Life Sciences, Sambalpur University, JyotiVihar, Orissa.
- 5) Kevin, A and K.E.Lee (1989) Earthworm for Gardeners and Fisherman (CSIRO,Australia, Division of Soils)
- 6) Satchel, J.E. (1983) Earthworm Ecologyl Chapman Hall, London.
- 7) Wallwork, J.A. (1983) –Earthworm Biology Edward Arnold (Publishers) Ltd. London.

Pedagogy

- 1. Demonstration
- 2. Assignment
- 3. Group discussion
- 4. Field visit
- 5. Use of Audio-Visual aids.

Formative Assessment							
Assessment Occasion	Weightage in Marks						
Class Test	05						
Attendance and Assignments	05						
Visit to vermicompost unit and report	05						
Total	15						

Date:

Course Coordinator

Proposed Course content under New Education Policy – Year 2021-22 For II Semester B.Sc Zoology

Course Title: Biochemistry and Physiology	Course Credits: 4
Course Code: DSCC5Z00T2	L-T-P per week: 4-0-0
Total Contact Hours: 56	Duration of ESA: 3 Hours
Formative Assessment Marks: 40	Summative Assessment Marks:60
Model Syllabus Authors:	

Core Course Content

Course outcomes:

The student at the completion of the course will learn:

- 1. To develop a deep understanding of structure of biomolecules like proteins, lipids and carbohydrates.
- 2. How simple molecules together form complex macromolecules.
- 3. To understand the thermodynamics of enzyme catalyzed reactions.
- 4. Mechanisms of energy production at cellular and molecular levels.
- 5. To understand various functional components of an organism.
- 6. To explore the complex network of these functional components.
- 7. To comprehend the regulatory mechanisms for maintenance of function in the body.

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs)

Course Outcomes (COs) / Program Outcomes (POs)	CC 1	CC T2	CC 3	CC 4	CC 5	CC 6	CC 7	CC 8	CC 9	CC 10	CC 11
I Core competency		Х									
II Critical thinking		X									
III Analytical reasoning		X									
IV Research skills		X									
V Team work		Х									

Note: Course Articulation Matrix relates course outcomes of course with the corresponding program outcomes whose attainment is attempted in this course. Mark _X' in the intersection cell if a course outcome addresses a particular program outcome.

Core Course content:

Content	Hours
Unit I	14
Chapter 1. Structure and Function of Biomolecules:	
 Structure and Biological importance of carbohydrates (Monosaccharides, Disaccharides, Polysaccharides and Glycoconjugates). Lipids (saturated and unsaturated Fatty acids, Tri-acylglycerols, Phospho lipids, Glycolipids and Steroids) 	
• Structure, Classification and General Properties of a-amino acids; Essential and non-essential amino acids, Levels of organization in proteins; Simple and conjugate proteins.	
Chapter 2. Enzyme Action and Regulation	
• Nomenclature and classification of enzymes; Cofactors; Specificity of enzyme action.	
Isozymes; Mechanism of enzyme action	
• Enzyme kinetics; Factors affecting rate of enzyme-catalyzed reactions; Equation of Michaela's -Mendon, Concept of Km and V max, Enzyme inhibition	
• Allosteric enzymes and their kinetics; Regulation of enzyme action.	
Unit 2	14
 Chapter 3. Metabolism of Carbohydrates and Lipids Metabolism of Carbohydrates: glycolysis, citricacid cycle, gluconeogenesis, phosphate pentose pathway Glycogenolysis and Glycogenesis Lipids-Biosynthesis of palmiticacid; Ketogenesis, β-oxidation and omega -oxidation of saturated fatty acids with even and odd number of carbonatoms 	
Chapter 4. Metabolism of Proteins and Nucleotides	
 Catabolism of amino acids: Transamination, Deamination, Ureacycle, Nucleotides and vitamins Peptide linkages 	
Unit 3	14
Chapter 5. Digestion and Respiration in humans	
• Structural organization and functions of gastrointestinal tract and associated glands.	
 Mechanical and chemical digestion of food; Absorptions of carbohydrates, lipids, proteins, water, minerals and vitamins; Physiology of trachea and Lung. Mechanism of respiration, Pulmonary ventilation; Respiratory volumes and capacities; Transport of oxygen and carbon dioxide in blood, Respiratory pigments, Dissociation curves and the factors influencing it; 	
 Control of respiration. 	

 Components of blood and their functions; hemopoiesis Blood clotting: Blood clotting system, Blood groups: Rh-factor, ABO and MN 						
• Cardiac cycle; Cardiac output and its regulation, Electrocardiogram, Blood pressure and its regulation						
• Structure of kidney and its functional unit; Mechanism of urine formation						
Unit 4	14					
Chapter 7. Nervous System and Endocrinology in humans						
• Structure of neuron, resting membrane potential(RMP)						
• Origin of action potential and its propagation across the myelinated and						
unmyelinated nerve fibers. Types of synapse						
• Endocrine glands - pineal, pituitary, thyroid, parathyroid, pancreas and adrenal; hormones secreted by them.						
hormones secreted by them.Classification of hormones; Mechanism of Hormone action.						
 hormones secreted by them. Classification of hormones; Mechanism of Hormone action. Chapter 8. Muscular System in humans 						
 hormones secreted by them. Classification of hormones; Mechanism of Hormone action. Chapter 8. Muscular System in humans 						

Pedagogy: Written Assignment/Presentation/Project / Term Papers/Seminar

Formative Assessment	
Assessment Occasion	Weightage in Marks
House Examination/Test	20
Written Assignment/Presentation/Project / Term Papers/Seminar	15
Class performance/Participation	05
Total	40

Date: Co-ordinator

Zoology Semester II Core Course Lab Content

Course Title/Code: Biochemistry and Physiology	Course Credits: 2
Course Code: DSCC5Z00P2	L-T-P per week: 0-0-4
Total Contact Hours: 56	Duration of ESA: 3 Hours
Formative Assessment Marks: 15	Summative Assessment Marks:35
Model Syllabus Authors:	

Course Outcomes (COs):

At the end of the course the student should be able to understand:

Basic structure of biomolecules through model making.

Develop the skills to identify different types of blood cells.

Enhance basic laboratory skill like keen observation, analysis and discussion.

Learn the functional attributes of biomolecules in animal body.

Know uniqueness of enzymes in animal body and their importance through enzyme kinetics.

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs)

Course Outcomes (COs) / Program Outcomes (POs)	CC P1	CC P2	CC 3	CC 4	CC 5	CC 6	CC 7	CC 8	CC 9	CC 10	CC 11
I Core competency		X									
II Critical thinking		X									
III Analytical reasoning		Χ									
IV Research skills		Х									
V Team work		X									

Note: Course Articulation Matrix relates course outcomes of course with the corresponding program outcomes whose attainment is attempted in this course. Mark _X' in the intersection cell if a course outcome addresses a particular program outcome.

Course Content

List of labs to be conducted	Hours
1. Preparation of models of nitrogenous bases- nucleosides and nucleotides.	20
2. Preparation of models of amino acids and dipeptides.	
3. Preparation of models of DNA and RNA.	
4. Qualitative analysis of Carbohydrates, Proteins and Lipids.	
5. Qualitative analysis of Nitrogenous wastes – Ammonia, Urea and Uric acid.	
6. Separation of amino acids or proteins by paper chromatography.	
7. Determination of the activity of enzyme (Urease)-Effect of [S] and determination of	15
Km and Vmax.	
8. Determination of the activity of enzyme (Urease) - Effect of temperature and time.	
9. Action of salivary amylase under optimum conditions.	
10. Quantitative estimation of Oxygen consumption by fresh water Crab.	
11. Quantitative estimation of salt gain and salt loss by fresh water.	
12. Estimation of Hemoglobin in human blood using Sahli'shaemoglobinometer.	15
13. Counting of RBC in blood using Hemocytometer.	
14. Counting of WBC in blood using Hemocytometer.	
15. Differential staining of human blood corpuscles using Leishman stain.	
16. Recording of blood glucose level by using glucometer.	

Virtual Labs (Suggestive sites)	06
https://www.vlab.co.in	
https://zoologysan.blogspot.com www	.vlab.iitb.ac.in/vlab
www.onlinelabs.inwww.powershow	<u>.com</u>
https://vlab.amrita.edu	
https://sites.dartmouth.edu	

Text Books

- 1. Nelson & Cox: Leininger's Principles of Biochemistry: McMillan (2000)
- 2. Zubay et al: Principles of Biochemistry: WCB (1995)
- 3. Voet&Voet: Biochemistry Vols 1 & 2: Wiley (2004)
- 4. Murray et al: Harper's Illustrated Biochemistry: McGraw Hill (2003) Elliott and Elliott: Biochemistry and Molecular Biology: Oxford University Press
- 5. Guyton, A.C. & Hall, J.E. Textbook of Medical Physiology, Xl Edition, Hercourt Asia PTE Ltd. /W.B.Saunders Company. (2006).
- 6. Tortora, G.J. & Grabowski, S. Principles of Anatomy & Physiology. XI Edition John Wiley & sons (2006).
- 7. Christopher D. Moyes, Patricia M. Schulte. Principles of Animal Physiology. 3rd Edition, Pearson Education (2016).
- 8. Hill, Richard W., et al. Anima l physiology. Vol. 2. Sunderland, MA: Sinauer Associates, (2004).
- 9. Chatterjee CC Human Physiology Volume 1 & 2, 11th edition, CBS Publishers (2016).

Web References:

• Mammalian Physiology-<u>www.biopac.com</u>

Pedagogy: Lectures, Presentations, videos, Virtual Labs, Assignments, Tests, Individual or group Field oriented Project Report on orvisit to a research institute.

TOPICS RECOMMENDED FOR SEMINAR/PROJECT REPORT

- 1. Biochemical pathways, their evolutionary background and regulation.
- 2. Blood groups and their importance.
- 3. Vital enzymes for human body.
- 4. Essential and nonessential amino acids.
- 5. Important body lipids.
- 6. Significance of animal proteins.
- 7. Role of carbohydrates in animal body.
- 8. Nature of proteins and nurture of animal body.
- 9. Role of lipids in structural and functional organization of body.

Formative Assessment		
Assessment Occasion	Weightage in Marks	
Assignment/Monograph	05	
Test	05	
Participation in class	05	
Total	15	

Date: Co-ordinator

Course Content

Semester: II Semester B. Sc., (Hons) Zoology	Minor Core course
Course Title: PAPER I-BIOLOGY OF CHORDATES	Course Code: MDC5ZOOT2
Course Type: Minor Discipline Core Theory, L-T-P: 4-0-0	Course Credits: 4
Total Contact Hours: 56	Duration of ESA: 3 Hrs
Formative Assessment Marks:40	Summative Assessment Marks: 60
Model Syllabus Authors:	

Course Outcomes (COs):

At the end of the course the student should be able to:

- 1. Learn the structural biology of Chordates through their adaptive features.
- 2. Study the functional biology of Chordates through their body organization and functions.
- 3. Comprehend the identification of species and their evolutionary relationships.
- 4. Enhancement of research skills like critical thinking.
- 5. Develop abilities required for industrial employment as well as self-employment.

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs)

Course Outcomes (COs) /(POs)	MDC5ZO O T1	MDC5ZOO T2	MDC5ZOO T3	MDC5ZOO T4	MDC5ZOO T5	MDC5ZOO T6
I Core competency		Х				
II Critical thinking		Х				
III Analytical reasoning		Х				
IV Research skills		Х				
V Team work		Х				

Course Articulation Matrix relates course outcomes of course with the corresponding program outcomes whose attainment is attempted in this course. Mark _X' in the intersection cell if a course outcome addresses a particular program outcome.

Course Content	
Unit I	14
Chapter 1: Hemichordata:	
Type Study of <i>Balanoglossus</i> – Habit and Habitat, Morphology, Coelom. Tornaria larva and its affinities.	
Affinities and systematic position of Hemichordata.	
Chapter 1: Chordates:	
Origin of Chordates.	
Basic characters of chordates and classification upto classes.	
Chapter 3:Urochordata :	
Type Study of Herdmania-Habit and Habitat, Morphology,	
Ascidian tadpole- structure and its retrogressive metamorphosis.	
Chapter 4: Cephalochordata :	
Type Study of <i>Branchiostoma</i> (<i>Amphioxus</i>)-Habit and Habitat, Morphology,	
Digestive system, Feeding mechanism and circulatory system.	
Chapter 5:Agnatha	
General characters of Agnatha and classification upto classes.	
Salient features of Cyclostomata and Ostracodermi with orders and	
examples.	
Ammocoete larva and its significance.	

Unit II	14
Chapter 6: Vertebrates:	
General characters and Classification of different classes of vertebrates (Pisces,	
Amphibia, Reptilia, Aves, Mammalia) up to the order withexamples.	
General characters of Chondrichthyes and Osteichthyes.	
Interesting features and evolutionary significance of Dipnoi.	
Salient features of Placodermi with examples.	
Interesting features of Sphenodon.	
Interesting features of Archaeopteryx.	
Salient features of Ratitae and Carinatae with examples.	
Interesting features of mammalian orders (Insectivora, Carnivora, Chiroptera, Cetacea,	
Proboscidia, Ungulata – Perissodactyla and Artiodactyla, and Primates –Platyrhini and	
Catarhini) with examples.	
Unit III	14
Chapter 7: General account of Chordates:	
Types of caudal fins and tails in fishes.	
Osmoregulation and Swim bladder in Fishes.	
Origin of Amphibia.	
Neoteny and Paedogenesis.	
Adaptive radiation in extinct reptiles with suitable examples. Temporal fossae in reptiles.	
Poison apparatus and biting mechanism in snakes.	
Parental care in Pisces, Amphibians, Reptiles, Birds and Mammals.	
Dentition in mammals. Evolution of molar tooth.	
Migration in Pisces, and Birds and Mammals.	
Chapter 8: Type study of <i>Rattus:</i> Morphology, Endoskeleton (Axial and	
appendicular skeleton, except hands and feet) Digestive system, circulatory system,	
reproductive system.	14
Unit IV	14
Beneficial Chordates:	
Chapter 9:Pisciculture	
Meaning of Aquaculture and Pisciculture, inland and marine fisheries. Inland Pisciculture – Procedure, composite fish forming and significance.	
A brief account of fishing gears and crafts.	
Fish processing and preservation.	
Chapter 10:Poultry	
Definition, breeds of Fowls.	
Indigenous and exotic breeds with suitable examples.	
Poultry products and by-products.	
Diseases of poultry – Ranikhet, Fowl pox, Fowl Cholera, Fowl Typhoid.	
Chapter 11:Dairy	
Breeds of cattle: indigenous and exotic breeds. Improvements in cattle breeding – artificial insemination, MOET.	
Pasteurization and gobar gas.	

Topics Suggested for Assignment/ Formative Assessment:

1. Animal connecting links. 2. Migration in Birds 3. Communication in Primates 4. Parental Care in Animals 5. Neoteny 6. Paedogenesis 7. Poultry management 8. Dairy Management 9. Fisheries management 10.Products and by-products of Diary.

Suggested Readings:

- 1. Harveyetal: TheVertebrate Life (2006)
- 2. Colbertetal:Colbert'sEvolutionoftheVertebrates:Ahistoryofthebackbonedanimalsthroughtime (5thed2002,Wiley-Liss)
- 3. Hildebrand: Analysis of Vertebrate Structure (4thed 1995, John Wiley)
- 4. KennethV.Kardong(2015)Vertebrates:ComparativeAnatomy,Function,EvolutionMcGrawHill
- 5. McFarlandetal:VertebrateLife(1979,MacmillanPublishing)
- 6. ParkerandHaswell:TextBookofZoology,Vol.II(1978,ELBS)
- 7. Romer and Parsons: The Vertebrate Body(6thed 1986,CBSPublishingJapan)
- 8. Young:TheLifeofvertebrates(3rded2006,ELBS/Oxford)
- 9. WeichertC.KandWilliamPresch(1970).ElementsofChordateAnatomy,TataMcGrawHills

Web Sources:

- 1. <u>https://www.khanacademy.org/science/biology/crash-course-bio-ecology/crashncourse-biology-science/v/crash-course-biology-123</u>
- 2. https://opentextbc.ca/biology2eopenstax/chapter/chordates/

Pedagogy: Lectures, Presentations, videos, Assignments and Weekly Formative Assessment Tests.

Formative Assessment		
Assessment Occasion	Weightage in Marks	
Assignment/ Field Report/ Project	15 Marks	
Test	20 Marks	
Participation in class	05 marks	
Total	40 Marks	

Date: Co-Ordinator

Minor Core Course Lab Content

Semester: II Zoology				
Course Title: Lab on Biology of Chordates, L-T-P: 0- 0-4	Course Credits: 2			
Total Contact Hours: 56	Duration of ESA: 3 Hours			
Formative Assessment Marks:15	Summative Assessment Marks: 35			
Model Syllabus Authors:				

Course Outcomes (COs):

At the end of the course the student should be able to:

- 1. Understand basics of classification of Chordates.
- 2. Learn the diversity of habit and habitat of animal species.
- 3. Develop the skills to identify different classes and orders of Chordates.
- 4. Know uniqueness of particular animal and its importance
- 5. Enhancement of basic laboratory skill like keen observation and drawing.

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs)

Course Outcomes (COs) / Program Outcomes (POs)	MDC5ZOO P1	MDC5ZOOP 2	MDC5ZOOP 3	MDC5ZOOP 4	MDC5ZOOP 5	MDC5ZOOP 6
I Core competency		Х				
II Critical thinking		Х				
III Analytical reasoning		Х				
IVResearch skills		Х				
V Team work		Х				

Note: Course Articulation Matrix relates course outcomes of course with the corresponding program outcomes whose attainment is attempted in this course. Mark _X' in the intersection cell if a course outcome addresses a particular program outcome.

Minor Course Lab Content

List of labs to be conducted	56 Hours
1. Protochordata : Balanoglossus and its T. S through proboscis Ascidian/ <i>Herdmania</i> and <i>Amphioxus</i> , T.S. of <i>Amphioxus</i> through pharynx and intestine.	
2. Cyclostomata: - <i>Petromyzon</i> , Ammocoete larva and <i>Myxine</i> .	
 3. Pisces: - Cartilaginous Fishes – Narcine, Trygon, Pristis, Myolobaties - Bony Fishes –Zebra fish, Hippocampus, Muraena, Ostracion, Tetradon, Pleuronectus, Diodon, Echeneis. 	
4. Ornamental fishes: -Siamese, Koi, Oscar, Betta Sp., Neon tetra, Guppies, Gold fish, Angle fish, Rainbow fish, Mollies.	
5. Accessory respiratory organs – Saccobranchus, Clarias and Anabas.	
6. Amphibia: -Frog, Bufo, Ambystoma, Axolotl larva, Necturus and Ichthyophis.	
 7. Reptilia: -Turtle, Tortoise, Mabuya, Calotes, Chameleon, Varanus. snakes –Dryophis, Rat snake, Brahmini, Cobra, Krait, Russell's viper and Hydrophis; Poison apparatus. 	
8. Aves:Beak and feet modifications in the following examples: Duck, Crow, Sparrow, Humming bird, Parrot, King fisher, Eagle or Hawk.	
9. Mammalia : -Mongoose, Squirrel, Pangolin, Hedge Hog, Rabbit, Rat, Monkey and Loris.	
10. Virtual Dissection/Cultured specimens: -Shark/Bony fish: Afferent and efferent branchial systems, glossopharyngeal and vagus nerves.	
11.Virtual Dissection/Cultured specimens: - Frog: Origin and distribution of trigeminal nerve.	
12. Virtual Dissection/Cultured specimens: -Rat: Dissection (only demonstration) – Circulatory system (arterial and venous), urinogenital system.	
 Beneficial Chordates: 13. Pisciculture: Cultured varieties of fishes- fresh water and marine water fishes (locally available) Diseases- (Bacterial, viral, fungal and parasitic) Products and by products- (Meat, gelatin, Insulin, Isinglass, protein and chitin) 	

14. Poultry: Cultured varieties- Indigenous and exotic species.	
Diseases- Bacterial and viral.	
Products and by-products – Meat, Eggs, albumin flakes and manure.	
15. Dairy: Cultured varieties-Indigenous and exotic breeds.	
Diseases- Infectious, hereditary and deficiency.	
Products and by-products – Milk, Cheese, Yougurt.	
roudes and by produces mink, cheese, rougait.	

Suggested Readings:

- 1. Harveyetal : The Vertebrate Life(2006)
- 2. Colbertetal:Colbert'sEvolutionoftheVertebrates:Ahistoryofthebackbonedanimalsthroughtime (5thed2002, Wiley-Liss)
- 3. Hildebrand: Analysis of Vertebrate Structure(4thed1995,JohnWiley)
- 4. KennethV.Kardong(2015)Vertebrates:ComparativeAnatomy,Function,EvolutionMcGrawHill
- 5. McFarlandetal : Vertebrate Life(1979,MacmillanPublishing)
- 6. Parkerand Haswell: Text Book of Zoology, Vol. II(1978, ELBS)
- 7. Romerand Parsons: The Vertebrate Body(6thed 1986,CBSPublishingJapan)
- 8. Young: The Life of vertebrates(3rded2006,ELBS/Oxford)
- 9. WeichertC.KandWilliamPresch(1970).ElementsofChordateAnatomy,TataMcGrawHills

Web Sources:

- 1. <u>https://www.khanacademy.org/science/biology/crash-course-bio-ecology/crashncourse-biology-science/v/crash-course-biology-123</u>
- 2. https://opentextbc.ca/biology2eopenstax/chapter/chordates/

Pedagogy: Lectures, Presentations, videos, Assignments and Weekly Formative Assessment Tests.

Formative Assessment		
Assessment Occasion	Weightage in Marks	
Assignment/Monograph	05	
Test	05	
Participation in class	05	
Total	15	

Date:Co-Ordinator

Subject Committee Chairperson

Open Elective Course Content

Semester: II Zoology

Course Title: Parasitology Course Code: OEC5ZOOT2	Course Credits: 3
Total Contact Hours: 42	Duration of ESA: 3 Hours
Formative Assessment Marks: 40	Summative Assessment Marks:60
Model Syllabus Authors:	

Course Outcomes (COs):

At the end of the course the students will be able to:

- 9. Know the stages of the life cycles of the parasites and infective stages.
- 10. Develop ecological model to know population dynamics of parasite, establishment of parasite population in host body, adaptive radiations and methods adopted by parasite to combat with the host immune system.
- 11. Develop skills and realize significance of diagnosis of parasitic infection and treatment.
- 12. Understand about diseases caused by Protozoa, Helminthes, Nematodes and Arthropods at molecular level.
- 13. Develop their future career in medical sciences and related administrative services.

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs)

Course Outcomes (COs) / Program Outcomes (POs)	CC 1	CC 2	CC 3	CC 4	CC 5	CC 6	CC 7	CC 8	CC 9	CC 10	CC 11	CC 12
I Core competency	Х											
II Critical thinking	Х											
III Analytical reasoning	Х											
IV Research skills	Х											
V Team work												

Course Articulation Matrix relates course outcomes of course with the corresponding program outcomes whose attainment is attempted in this course. Mark _X' in the intersection cell if a course outcome addresses a particular program outcome.

Course Content

Content	42Hrs				
Unit – 1					
Chapter 1. General Concepts	14				
 Introduction, Parasites, parasitoids, host, zoonosis 					
Origin and evolution of parasites					
Basic concept of Parasitism, symbiosis, phoresis, commensalisms and mutualism					
Host-parasite interactions and adaptations					
Life cycle of human parasites					
Occurance, mode of infection and prophylaxis					
Chapter 2. Parasitic Platyhelminthes					
• Study of morphology, life cycle, pathogenicity, prophylaxis and control measures of					
• Fasciolopsisbuski					
Schistosomahaematobium					
• Taeniasolium					
• Hymenolepis nana					
Chapter 3. Parasitic Protists					
• Study of morphology, life cycle, pathogenicity, prophylaxis and control <i>measures</i> of					
• Entamoebahistolytica					
• Giardia intestinalis					
Trypanosomagambiense					
• Plasmodium vivax					

Unit – 2	14
Chapter 4. Parasitic Nematodes	
• Study of morphology, life cycle, pathogenicity, prophylaxis and control measures of	
Ascarislumbricoides	
Ancylostomaduodenale	
Wuchereriabancrofti	
Trichinellaspiralis	
Nematode plant interaction ; Gall formation	
Chapter 5. Parasitic Arthropods	
Biology, importance and control of	
• Ticks (Soft tick <i>Ornithodoros</i> , Hard tick <i>Ixodes</i>)	
• Mites(Sarcoptes)	
• Lice (<i>Pediculus</i>)	
• Flea (<i>Xenopsylla</i>)	
• Bug (<i>Cimex</i>)	
• Parasitoid (Beetles)	
Chapter 6. Parasitic Vertebrates	
Cookicutter Shark	
Hood Mocking bird and	
Vampire bat and their parasitic behavior and effect on host	
Unit – 3	14
Chapter 7.Molecular diagnosis & clinical parasitology	
General concept of molecular diagnosis for parasitic infection	
Advantages and disadvantages of molecular diagnosis	
Fundamental techniques used in molecular diagnosis of endoparasites	
• Immunoassay or serological techniques for laboratory diagnosis of endoparasites on the	
basis of marker molecules like G.intestinalis, B. coli, E. histolytica, L. donovani, Malarial	
parasite using	
• ELISA, RIA	
Counter Current Immunoelectrophoresis (CCI)	
 Complement Fixation Test (CFT) PCR, DNA, RNA probe 	

Suggested Readings:

- 19. Arora, D. R and Arora, B. (2001) Medical Parasitology. II Edition. CBS Publications and Distributors.
- 20. E.R. Noble and G.A. Noble (1982) Parasitology: The biology of animal parasites. V Edition, Lea & Febiger.
- 21. Ahmed, N., Dawson, M., Smith, C. and Wood, Ed. (2007) Biology of Disease. Taylor and Francis Group.
- 22. Parija, S. C. Textbook of medical parasitology, protozoology & helminthology (Text and colour Atlas), II Edition, All India Publishers & Distributers, Medical Books Publishers, Chennai, Delhi.
- 23. Meyer, Olsen & Schmidt's Essentials of Parasitology, Murray, D. Dailey, W.C. Brown Publishers.
- 24. K. D. Chatterjee (2009). Parasitology: Protozoology and Helminthology. XIII Edition, CBS Publishers & Distributors (P) Ltd.
- 25. Gunn, A. and Pitt, S.J. (2012). Parasitology: an Integrated Approach. Wiley Blackwell.
- 26. Noble, E. R. and G.A.Noble (1982) Parasitology: The biology of animal parasites. V th Edition, Lea &Febiger.
- 27. Paniker, C.K.J., Ghosh, S. [Ed] (2013). Paniker's Text Book of Medical Parasitology. Jaypee, New Delhi.
- 28. Parija,S.C.Textbookofmedicalparasitology,protozoology&helminthology(Textand color Atlas),II Edition, All India Publishers & Distributers, Medical Books Publishers, Chennai, Delhi.
- 29. Roberts, L.S and Janovy, J. (2009). Smith & Robert's Foundation of Parasitology. 8th. Edn. McGraw Hill.

- 30. Bogitsh, B. J. and Cheng, T. C. (2000). Human Parasitology. 2nd Ed. Academic Press, New York.
- 31. Chandler, A. C. and Read. C. P. (1961). Introduction to Parasitology, 10th ed. John Wiley and Sons Inc.
- 32. Cheng, T. C. (1986). General Parasitology. 2nd ed. Academic Press, Inc. Orlando.U.S.A.
- 33. Schmidt, G. D. and Roberts, L. S. (2001). Foundation of Parasitology. 3rd ed. McGraw Hill Publishers.
- 34. Schmidt, G. D. (1989). Essentials of Parasitology. Wm. C. Brown Publishers (Indian print1990, Universal Book Stall).
- 35. John Hyde (1996) Molecular Parasitology Open University Press.
- 36. J Joseph Marr and Miklos Muller (1995) Biochemistry and Molecular Biology of Parasites 2 ndEdn Academic Press.

Course Books published in English and Kannada may be prescribed by the Universities and College

Pedagogy: Chalk and Talk, PPT, Group discussion, Seminar, Interaction, virtual lab, Lab visit

Formative Assessment					
Assessment Occasion	Weightage in Marks				
House Examination/Test	20				
Written Assignment/Presentation/Project / Term Papers/Seminar	15				
Class performance/Participation	05				
Total	40				

Date:

Course Co-Ordinator

Subject Committee Chairperson

Skill Enhancement Course Content

Semester: II Zoology

Course Title: Sericulture Course Code: VEC5ZOOP2	Course Credits: 2
Total Contact Hours: 56 Hours	Duration of ESA: 3 Hrs.
Formative Assessment Marks: 15	Summative Assessment Marks: 35
Model Syllabus Authors:	

Course Outcomes (COs):

At the end of the course the student acquires the following knowledge:

- 1. Sericulture is an agro-based industry which gives economic empowerment to the students.
- 2. Sericulture may be taken up as a small scale industry by the small farmers and unemployed youth.
- 3. Get jobs in teaching profession, silk board and other Govt. institutions as technicians.
- 4. Student can be self-employed after successful completion of the course.

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs)

	se Outcomes (COs) / am Outcomes (POs)	VEC5ZOO P1	VEC5ZOO P2	3	4	5	6	7	8	9	10	11	12
i	Core competancy.		X										
ii	Critical thinking.		X										
iii	Analytical reasoning.		X										
iv	Research skill.		X										
v	Team work.		X										

Course Articulation Matrix relates course outcomes of course with the corresponding program outcomes whose attainment is attempted in this course. Mark _X' in the intersection cell if a course outcome addresses a particular program outcome.

Course Co	ntent
------------------	-------

	List of Lab to be conducted	42 Hrs
1	Morphology and taxonomy of mulberry.	
2	Raising of saplings – cutting preparation, planting and maintenance of nursery.	
3	Agronomical practices in mulberry cultivation-weeding, manuring, irrigation and harvesting.	
4	Diseases and pests of mulberry.	
5	Silk producing insects – non mulberry and mulberry silk worms.	
6	Life cycle and morphology of <i>Bombyxmori</i> .	
7	Dissection of digestive system and silk glands of <i>Bombyxmori</i> .	
8	Silk worm rearing equipments.	
9	Rearing process – incubation, chawki rearing, late age worm rearing, mounting and harvesting of cocoons.	
10	Silk worm diseases and pests – Grasserie, Flacherie, Muscardine, Pebrine, Uzi fly and Beetles.	
11	Grainages – production of silk worm eggs.	
12	Physical and commercial characteristics of cocoons.	
13	Reeling and weaving process – stiffling, cooking, brushing, reeling and re- reeling, different types of looms.	
14	Visit to mulberry farm and sericulture centre.	
15	Economics of silk production (Project)	

Text Books and References

- 1. Govindan, R., Narayanswami, T.K and Devaiah, M.C. 1998, Principles of silk worm pathology. Ser Publishers, Banglore.
- 2. Tazima, Y.1964 The genetics of the silk worm Logos Press Ltd.London .
- 3. Tazima Y 1978 The silk worm an important laboratory tool Kodnasha Ltd. Tokyo.
- 4. Ganga G ,SulochanaChetty J An introduction to sericulture Oxford and IBH Publishing Co.Pvt. Ltd. New Delhi.
- 5. Ullal and Narasimhanna Hand book of practiclesericulture .
- 6. FAO Mannuals on sericulture vol . 1-4.
- 7. Tazima Y 1958 Silkworm egg CSB Publication ,Bombay .
- 8. Yashimoro Tanaka 1964 Sericology CSB Publication , Bombay.

Pedagogy

- 1. Demonstration
- 2. Assignment
- 3. Group discussion
- 4. Field Visit.
- 5. Use of Audio-Visual aids.

Formative Assessment					
Assessment Occasion	Weightage in Marks				
Class Test	05				
Attendance and Assignments	05				
Visit to Mulberry Farm and Sericulture centre.	05				
Total	15				

Date:

Course Co-Ordinator