

KUVEMPU UNIVERSITY OFFICE OF THE DIRECTOR DIRECTORATE OF DISTANCE EDUCATION

Jnana Sahyadri, Shankaraghatta – 577 451, Karnataka

Ph: 08282-256246, 256426; Fax: 08282-256370; Website: www.kuvempuuniversitydde.org E-mail: info@kuvempuuniversitydde.org, ssgc@kuvempuuniversitydde.org

TOPICS FOR INTERNAL ASSESSMENT ASSIGNMENTS (2019-20) Course: M.Sc Mathematics (Previous)

Important Notes: (1)Students are advised to read the separate enclosed instructions before beginning the writing of assignments.(2)Out of 20 Internal Assignment marks per Paper, 5 marks will be awarded for the regularity (attendance) to the Counseling/ Contact Programme classes pertaining to the paper. Therefore, the topics given below are only for 15 marks each paper. Answer all questions. Each question carries 05marks

PAPER I:ALGEBRA

- 1. a) If p is a prime number and G is a group of order p^n , $n \ge 1$ then prove that the centre of G has at least 'p' elements.
 - b) Let p be a prime dividing o(G). Show that every sylow p-subgroup of G/K is of the form PK/K, where P is a sylow p-subgroup of G.

c)Prove that the product of any two ideals of a ring R is also an ideal of R. (2+2+1)

- 2. a)Define an Euclidean ring. Show that the ring I of all integers is a Euclidean ring.
 - b) Let F be a field. If A = {(x, y, 0): x, y \in F}, B = {(0, y, z): y, z \in F} be subspaces of

 $F^{3}(F)$, find the dimension of the subspace A+B.

c)If W is a subspace of a finite dimensional vector space V, define the annihilator A(W) of a subspace W. Further show that

i)
$$A(W_1 + W_2) = A(W_1) \cap A(W_2)$$

- ii) $A(W_1 \cap W_2) = A(W_1) + A(W_2)$. (1+2+2)
- 3. a) Let T be a linear operator on a vector space V over F. If W_1, W_2, \ldots, W_k are T-invariant subspaces of V, prove that $\sum_{i=1}^k W_i$ and $\bigcap_{i=1}^k W_i$ are T-invariant subspaces of V.
- b) If $f(x) \in F[x]$ is irreducible over F, then show that all its roots have the same multiplicity

PAPER II:ANALYSIS-I

- 1. a) Prove that $|x + y|^2 + |x y|^2 = 2|x|^2 + 2|y|^2$, if $x \in \mathbb{R}^k$ and $y \in \mathbb{R}^k$. Interpret this geometrically, as a statement about parallelograms.
 - b) Construct a bounded set of real numbers with exactly three limits points.
 - c) Prove that every connected metric space with at least two points is uncountable..
- 2. a) Prove that every convex subset of \mathbb{R}^k is connected.
 - b) Suppose f is differentiable on $(0,\infty)$, f'' is bounded on $(0,\infty)$ and $f(x) \to 0$, as
 - $x \to \infty$, then prove that $f'(x) \to \infty$ as $x \to \infty$.
 - c) Suppose f is bounded real function on [a, b] and f² ∈ R on [a, b]. Does it follow that f ∈ R? Does the answer change if we assume that f³ ∈ R?
- a) Prove that let {f_n} be uniformly bounded sequence of functions which are Riemannian integrable on [a, b] and put F_n = ∫_a^x f_n(t)dt, a ≤ x ≤ b then there exists a subsequence {F_{nk}} Which converges uniformly on [a, b].
 - b) If f(x) = 0 for all irrational x, f(x) = 1 for all rational x then prove that $f \notin \mathbb{R}$ on [a, b] for any a < b.

PAPER III:ANALYSIS-II

- a) Prove that every uniformly convergent sequence of bounded functions is uniformly bounded.
 b) Let {f_n}[∞]_{n=1} be a sequence of continuous functions which converges uniformly to a function f on a set E. Prove that lim_{n→∞} f_n(x_n) = f(x) for every sequence of points x_n ∈ E, such that x_n → x and x ∈ E. Is the converse of this true?
- 2. a) Consider $f(x) = \sum_{n=1}^{\infty} \frac{1}{1+n^2x}$. For what values of x does the series converges absolutely? On what intervals does it converge uniformly? On what intervals does it fail to converge uniformly? Is f continues wherever the series converges ? Is f bounded.

b) Consider $f(x) = \sum_{n=1}^{\infty} \frac{(nx)}{n^2}$, where x is real. Find all discontinuous of f and show that they form a countable dense set. Show that f is nevertheless Riemann-integrable on every bounded interval.

c) Let $x_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$ and define $y_n = x_n - \log n$. Show that the sequence (y_n) tends to a limit y. Where $0 < y \le 1$. Deduce that $1 - \frac{1}{2} + \frac{1}{3} - \dots = \log 2$.

- 3. a) If the partial derivatives f_x and f_y exists and are bounded in a region $R \subset R^2$, then f is continuous in R.
 - b) If f(0,0) = 0 and $f(x, y) = \frac{xy}{x^2 + y^2}$ if $(x, y) \neq (0,0)$. Prove that $(D_1 f)(x, y)$ and $(D_2 f)(x, y)$ exists at every point of R^2 , although f is not continuous at (0,0)
 - c) Take m = n = 1 in the implicit function theorem and interpret the theorem graphically.

PAPER IV: DIFFERENTIAL EQUATIONS

- 1. a) Find the transformation which transforms $a_0(t)x'' + a_1(t)x' + a_2(t)x = 0$ into an equation whose in the first derivative term is absent.
 - b) Show that the function $\{t^3, |t^3|\}$ are linearly independent on [-1,1] but not on [-1,0]
- 2. a) Given a solution of $(1 t^2)x'' 2tx' + 6x = 0, \phi_1(t) = 3t^2 1$. Find its general solution.
 - b) Solve $x^{(4)} + 4x = 2\sin t + 4e^t + 1 + 3t^2$ by using the method of undetermined coefficients.
- 3. a) Solve the nonlinear equation $p^2 3q^2 u = 0$ with Cauchy data $u(x, 0) = x^2$ using Cauchy method of characteristics.
 - b) Find the solution of the heat equation of u_t = c²u_{xx}; 0 < x < l; 0 < t < α when subjected to the Neumann conditions u(0,t) = k₁, u(l,t) = k₂; and an initial condition u(x,0) = φ(x) for all x.

* * * *