

Phone: 08282-256426; Fax: 08282-256370; Website: www.kuvempuuniversitydde.org E-mails: ssgc@kuvempuuniversity.org; info@kuvempuuniversitydde.org

TOPICS FOR INTERNAL ASSESSMENT ASSIGNMENTS: 2019-20 Course: M.Sc. PHYSICS (Previous)

Important Notes: (1) Students are advised to read the separate enclosed instructions before beginning the writing of assignments. (2) Out of 20 Internal Assignment marks per paper, 5 marks will be awarded for regularity (attendance) to Counseling/ Contact Programme classes pertaining to the paper. Therefore, the topics given below are only for 15 marks each paper.

Paper I: Mathematical methods and classical mechanics

1) A sphere of radius 'a' is centered at a point Γ_1 ,	4 Marks		
a) Write out the algebraic equation for the sphereb) Write out a vector equation for the sphere2) Find the residue of f(z)			
		Where $f(z) = \frac{z^2 - 2z}{(z+1)^2 (z+4)}$	3Marks

3) Discuss the harmonic oscillator problem using Hamilton Jacobi method

3Marks

Paper II: Quantum and Statistical Mechanics

1) With U and F thermo dynamical potentials, obtain the Gibb's Helmoltz equation? 2Marks

2) Explain the scattering by an alternative square potential well. 4marks

3) A particle is in an infinitely deep one dimensional well, determine the momentum distribution for the particle in the exited state n=2.?4marks

Paper III: Solid state physics

- Draw a plane lattice and indicate two kinds of double cells and one triple cell in that lattice.
- 2) Prepare an energy diagram representing an n-type and p-type semiconductor.
- Find the energies of six lowest energy levels of a particle in cubical box. Which of the levels are degenerate?
 4marks

Paper IV: Electronics

1) The electric field \vec{E} and the magnetic field \vec{H} in a source- free homogeneous, isotropic region are given as

$$\vec{E} = 100(j\hat{X}+2\hat{y}-j\hat{z})e^{jwt}$$

 $\vec{H} = (-\hat{x} + i\hat{y} - i\hat{z})e^{jwt}$

Obtain the average power density?

2) Find $v_0(t)$ for t>0 in the circuit of figure given below, if switch is changed at t=0 after having remained in the position shown for long time. 4marks

3) Describe how an FET can be used as voltage variable resistor (VVR)

3marks

3marks

3marks

3marks

KUVEMPU UNIVERSITY OFFICE OF THE DIRECTOR DIRECTORATE OF DISTANCE EDUCATION

Jnana Sahyadri, Shankaraghatta – 577 451, Karnataka

Phone: 08282-256426; Fax: 08282-256370; Website: www.kuvempuuniversitydde.org E-mails: ssgc@kuvempuuniversity.org; info@kuvempuuniversitydde.org

TOPICS FOR INTERNAL ASSESSMENT ASSIGNMENTS: 2019-20

Course: M.Sc. PHYSICS (Final year)

Important Notes: (1) Students are advised to read the separate enclosed instructions before beginning the writing of assignments. (2) Out of 20 Internal Assignment marks per paper, 5 marks will be awarded for regularity (attendance) to Counseling/ Contact Programme classes pertaining to the paper. Therefore, the topics given below are only for 15 marks each paper.

Paper-V: Electrodynamics, Optics and Molecular spectroscopy

- 1) Obtain the expression for potential at a point due to uniformly charged disc? 4Marks
- 2) Assuming that the charge 'q' is uniformly distributed in a spherical volume of radius 'R'. Discuss the variation of
 - a) Electric intensity
 - b) Potential as the field point is moved from the centre of the sphere to infinity? 4Marks
- 3) Discuss the population inversion.

2Marks

Paper-VI: Nuclear, cosmic rays & particle physics

1) Why is it that only α - particles are emitted by radioactive nuclei, while protons and neutrons are not? **2Marks**

2) Why is it possible to produce the fission of U^{235} with slow neutrons where as it is

necessary to use fast neutrons to produce the fission of U^{238} . **2Marks**

4) a) Experimentally the study of p-p scattering is capable of much higher accuracy than n-p scattering, why?

b) What are the similarities between (nn) & (pp) forces? 3Marks

Paper-VII: Solid State Physics - I

 One gram molecule of a certain polar substance is dissolved in to 1000 cm³ of a non –polar liquid. The liquid itself has a dielectric constant of 3.0 at 27°, where as the solution has a dielectric constant of 3.2 at the temperature, calculate the dipole moment of the polar molecules..

4Marks

2) Show that the expression for the average energy of a system can be given by the relation (E)= $KT^2 d(\log z)/dT$

Where z-Partition function for classical one dimensional system and is given **3Marks**

by
$$z=\iint d.p.dx.\exp\{\frac{-E(P,X)}{RT}\}$$

3) What is dielectric break down? Summaries the various factors contributing to down in dielectrics.

Paper-VIII: Solid State Physics - II

1) Magnetic susceptibility of copper is 0.5×10^{-5} . Calculate the magnetic moment per unit volume of copper, when it is subjected to a magnetic field of 10^4 G. If the material is in the crystalline form, how will the susceptibility be affected?

4Marks

2) Calculate the maximum wavelength of microwave radiation that will absorbed at 0 k in a) pb, T_c =7.19 k

3)Write a note on susceptibility? 2Marks