Model Curriculum

Name of the Degree Program: BSc (Honors) Chemistry with AnalyticalSpecialization

Discipline Core: ChemistryTotal Credits for the Program: 176 Starting year of implementation: 2021-22

Program Outcomes:

By the end of the program the students will be able to:

(Refer to literature on outcome based education (OBE) for details on Program Outcomes)

- 1. **PO. 1:** To create enthusiasm among students for Analytical chemistry and its application in various fields of life.
- 2. **PO. 2:** To provide students with broad and balanced knowledge and understanding of key concepts in Analytical chemistry
- 3. **PO. 3:** To develop in students a range of practical skills so that they can understand and assess risks and work safely measures to be followed in the laboratory.
- 4. **PO. 4:** To develop in students the ability to apply standard methodology to the solution of problems in chemistry
- 5. **PO. 5:** To provide students with knowledge and skill towards employment or higher education in Analytical chemistry or multi-disciplinary areas involving Analytical chemistry.
- 6. **PO. 6:** To provide students with the ability to plan and carry out experiments independently and assess the significance of outcomes and to cater to the demands of chemical Industries of well-trained graduates
- 7. **PO. 7:** To develop in students the ability to adapt and apply methodology to the solution of unfamiliar types of problems.
- 8. **PO. 8:** To instil critical awareness of advances at the forefront of chemical sciences, to prepare students effectively for professional employment or research degrees in chemical sciences and to develop an independent and responsible work ethics

Assessment:

Weightage for assessments (in percentage)

Type of Course	Formative Assessment / IA	Summative Assessment
Theory	40	60
Practical	15	35
Projects	-	-
Experiential Learning (Internshipsetc.)	-	-

Curriculum Structure for the Undergraduate Degree Program BSc (Honors) Chemistry with Analytical Specialization

Total Credits for the Program: 176Starting year of implementation: 2021-22

Name of the Degree Program: B. Sc (Honors) Discipline/Subject: Chemistry

Program Articulation Matrix:

This matrix lists only the core courses. Core courses are essential to earn the degree in that discipline/subject. They include courses such as theory, laboratory, project, internships etc. Elective courses may be listedseparately

Semester	Title /Name Ofthe course	Program outcomes that the course addresses(not more than3 per course)	Pre- requisite course(s)	Pedagogy##	Assessment\$
1	DSC-1: Analytical and Organic Chemistry-I	 The concepts of chemical analysis, accuracy, precision and statistical data treatment Understand the preparation of alkanes, alkenes and alkynes, their reactions, etc. Understand the mechanism of nucleophilic, electrophilic reactions 	P.U.C with Chemistry	Assignment Desk work	Internal Exams, Continuous Evaluation, Sem Exams
	DSC lab-1: Analytical and Organic Practical's-I	 The students will be able to learn how to handle the glassware, prepare and dilute solutions and perform the experiments with prepared reagents The students will be able to determinethe analyte through volumetric and gravimetric analysis and understand the chemistry involved in each method of analysis. The students will be able to deduce the conversion factor based on 	-	Assignment Desk work	Internal Exams, Continuous Evaluation, Sem Exams

		staichiomatry and			
		stoichiometry and in turn use this			
		value for			
		calculation			
2	DSC-2: Inorganic and Physical Chemistry-I DSC Lab -2: Inorganic and	 The Bohr's theory of atomic structure and how it was developed Quantum numbers and their necessity in explaining the atomic structure The concept of unit cell, symmetry elements, Nernst distribution law. To prepare 	-	Assignment Desk work	Internal Exams, Continuous Evaluation, Sem Exams
	Physical Practical's-I	standard solutions • Techniques like precipitation, filtration, drying and ignition • Various titrimetric techniques and gravimetric methods		Desk work	Exams, Continuous Evaluation, Sem Exams
3	DSC-3: Analytical and Organic Chemistry-II DSC Lab-3: Analytical and Organic Practical's-II		DSC-1 and DSC-2	Assignment Desk work	Internal Exams, Continuous Evaluation, Sem Exams
4	DSC-4: Inorganic and Physical Chemistry-II DSC Lab-4: Inorganic and Physical Practical's-II			Assignment Desk work	Internal Exams, Continuous Evaluation, Sem Exams
5.	DSC-5: Selected topics in Inorganic Chemistry DSC Lab-5: Inorganic Chemistry Practical's DSC-6: selected topics in Organic Chemistry DSC Lab-6: Organic Chemistry Practical's		DSC-3 and DSC-4	MOOC, Problem solving	Internal tests, Assignments, Quiz

6.	DSC-7: Selected topics in Physical Chemistry DSC Lab-7: Physical Chemistry Practical's. DSC-8: Spectroscopy DSC Lab-8: Analytical and Industrial Chemistry Practical's		MOOC, Problem solving	Internal tests, Assignments, Quiz
7.	DSC-9 :Analytical Techniques=I DSC Lab-9: Analytical Chemistry. DSC-10:Applied Chemical Analysis. DSC Lab-10 :Analytical Chemistry. DSC-11: Enviornmental and Nanomaterial Chemistry.	DSC-5, DSC-6, DSC-7 and DSC-8	MOOC, Problem solving	Internal tests, Assignments, Seminar, Debate, Quiz
8.	DSC-12: Analytical Techniques-II DISIPLINE A13(4) DSC-13: Separation and Electroanalytical Techniques. DSC-14: Analysis of food and pharmaceuticals		Project work, Industrial Visit	Internal tests, Assignments, Seminar, Debate, Quiz

#

Pedagogy for student engagement is predominantly lectures. However, other pedagogies enhancing better student engagement to be recommended for each course. The list includes active learning/ course projects/ problem or project based learning/ case studies/self study like seminar, term paper or MOOC

\$ Every course needs to include assessment for higher order thinking skills (Applying/ Analyzing/ Evaluating/ Creating). However, this column may contain alternate assessment methods that help formative assessment (i.e. assessment for learning).

BSc Chemistry (Honors) with specialization in Analytical Chemistry Semester 1

Course Title: DSC-1: Analytical and Organic Chemistry-I				
Total Contact Hours: 56	Course Credits: 4			
Formative Assessment Marks: 30	Duration of ESA/Exam: 3 hrs			
Model Syllabus Authors: Chairman	Summative Assessment Marks: 70			

Course Pre-requisite(s): Mention only course titles from the curriculum that are needed to be taken by the students before registering for this course.

PUC with Chemistry

Course Outcomes (COs):

At the end of the course the student should be able to:

(Write 3-7 course outcomes. Course outcomes are statements of observable student actions that serve as evidence of knowledge, skills and values acquired in this course)

- 1. The concepts of chemical analysis, accuracy, precision and statistical data treatment
- 2. Prepare the solutions after calculating the required quantity of salts in preparing the reagents/solutions and dilution of stock solution.
- 3. The concept of volumetric and gravimetric analysis and deducing the conversion factor for determination
- **4.** Handling of toxic chemicals, concentrated acids and organic solvents and practice safety procedures.
- 5. The concepts of Organic reactions and techniques of writing the movement of electrons, bond breaking, bond forming
- 6. The Concept of aromaticity, resonance, hyper conjugation, etc.
- 7. Understand the preparation of alkanes, alkenes and alkynes, their reactions, etc.
- 8. Understand the mechanism of nucleophilic, electrophilic reactions

Course Articulation Matrix: Mapping of Course Outcomes (COs) with Program Outcomes (POs 1-12)

Course Outcomes (COs) / Program Outcomes (POs)	1	2	3	4	5	6	7	8	9	10	11	12
1	х											
2	х											
3	х											
4	х											
5	х											
6	х											
7	х											
8	х											

Course Articulation Matrix relates course outcomes of course with the corresponding program outcomes whose attainment is attempted in this course. Mark 'X' in the intersection cell if a course outcome addresses a particular program outcome.

BA/BSc/BCom/BBA/BCA

BSc Semester 1 – Chemistry (Hons)with specialization in Analytical Chemistry

Number of Theory Credits	Number of lecture hours/semester	Number of practical Credits	Number of prac hours/ semeste			
4	56	2	56			
	Content of The	eory Course 1		56Hrs		
Unit –1				14		
and methods. Classifi precision, sensitivity, s	Il chemistry: Definitions of a cation of analytical techniqu electivity, method validation. of quantification (LOQ), linea	ues. Choice of an analytica Figures of merit of analytica	al method - accuracy, al methods and limit of			
indeterminate errors, a samples -mean, medi	of analytical data:Limitations ibsolute error, relative error, r an, range, standard deviatio east squares method), correla	minimization of errors. Statis on and variance. External	tical treatment of finite			
Basic laboratory practi (solids and liquids), we General rule for perf Chemical laboratory, F	ices, calibration of glassware eighing, drying, dissolving, Ac forming quantitative determ Rules of fire prevention and a ils, concentrated/fuming acids	id treatment, Rules of work i inations (volumetric and g accidents, First aid. Precaut	n analytical laboratory, ravimetric), Safety in			
Unit - 2				14		
reagents/solutions. No	asic principle of titrimetric ar rmality, Molarity and Mole fra m source materials (salts), co	action. Use of $N_1V_1 = N_2V_2$ f				
weak base vs strong	itration curves for strong aci acid titrations. Titration cu inorganic analysis - alkalinity	urves, Quantitative applica				
Complexometric titrime	etry: Indicators for EDTA tit EDTA - direct, back, displac	trations - theory of metal i				
	cing redox equations, calcula y of redox indicators, calcula					
	Titration curves, titrants an Volhard's and Mohr's method		precipitation titrations			
precipitation, Co-preci	Requisites of precipitation, pitation, post-precipitation, ed in gravimetry (8-hydroxy qu	Advantages of organic rea	agents over inorganic			
Numerical problems or	all the above aspects.					
Unit - 3				14		
Influence of hybridization	1 1	unds, Hybridization, Shapes	of organic molecules,			
cross conjugation, con effect, Resonance and resonance, aromaticity acid and bases: Compa aliphatic and aromatic	Organic molecules bond, Types of chemical boncept of resonance, electro Hyper conjugation, cross of Huckel rule, anti-aromaticity arative study with emphasis of carboxylic acids-Acetic acid enzoic acid. Steric effect- Re	nic displacements: Inductiv onjugation explanation with y explanation with examples on factors effecting pK value d and chloroacetic acid, ace	e effect, Electromeric examples. Concept of a. Strengths of Organic s. Relative strength of etic acid and propionic			

Title of the Course:DSC-1: Analytical and Organic Chemistry – I

Mechanisms of Organic Reactions	
Notations used to represent electron movements and directions of reactions- curly arrows, formal charges. Types of bonds breaking- homolytic and heterolytic. Types of reagents-Electrophiles, nucleophiles, nucleophilicity and basicity. Types of organic reactions- substitution, addition, elimination, rearrangement and pericyclic reactions, explanation with examples.	
Chemistry of Aliphatic hydrocarbons, Carbon-Carbon Sigma bonds	
Chemistry of alkanes: Formation of alkanes, Wurtz reaction, Wurtz-Fittig reaction, Free radical substitution, Halogenation- relative reactivity and selectivity	
Carbon-carbon pi bonds	
Formation of alkenes and alkynes by elimination reaction. Mechanism of E1, E2, E1cb reaction. Saytzeff and Hofmann eliminations. Addition of HBr to propene, Free radical addition of HBr to propene. Addition of halogens to alkenes-carbocation and halonium ion mechanism. Stereospecificity of halogen addition. Ozonolysis mechanism - ozonolysis of propene. Addition of hydrogen halides to alkenes, mechanism, regioselectivity and relative rates of addition. Hydrogenation, hydration, hydroxylation and epoxidation of alkenes, explanation with examples, 1,2 and 1,4- addition reactions in conjugated dienes. Diels-Alder reaction, Allylic and benzylic bromination and mechanism in propene, 1-butene, 1-toluene and ethylbenzene.	
Unit - 4	14
Nucleophilic substitution at saturated carbon. Mechanism of S_N^1 and S_N^2 reactions with suitable	
examples. Energy profile diagrams, Stereochemistry and factors effecting S_N^{11} and S_N^{22} reactions.	
Aromatic Electrophilic substitution reactions, Mechanisms, σ and π complexes, Halogenation,	
Nitration, Sulphonation, Friedel Crafts alkylation and acylation with their mechanism. Activating and deactivating groups. Orientation influence, Ortho-para ratio.	
Aromatic nucleophilic substitution reaction: S_N^{Ar} and Benzyne mechanism with suitable examples	

Text Books

- 1. Vogel's Textbook of Quantitative Chemical Analysis, J. Mendham, R.C. Denney, J.D.Barnes and M.J.K. Thomas, 6th edition, Third Indian Reprint, Pearson Education Pvt.Ltd.(2007).
- 2. Fundamentals of Analytical Chemistry, D.A. Skoog, D.M. West, Holler and Crouch, 8th edition, Saunders College Publishing, New York (2005).
 Analytical Chemistry, G.D. Christian, 6th edition, Wiley-India (2007).
- 4. Practical Volumetric Analysis, Peter A C McPherson, Royal Society of Chemistry, Cambridge, UK (2015).
- 5. Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education)
- 6. Finar, I. L. Organic Chemistry (Volume I), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education)
- 7. McMurry, J. E. Fundamentals of Organic Chemistry, 7th Ed. Cengage Learning India Edition, 2013
- 8. Organic Reaction mechanism by V. K. Ahluwalia and K. Parashar (Narosa Publishers).
- 9. Organic Chemistry by S. M. Mukherji, S. P. Singh and R. K. Kapoor. (Narosa Publishers)
- 10. A Guide book to mechanism in Organic Chemistry by Peter sykes.Pearson.

References

Pedagogy					
Formative Assessment					
Assessment Occasion/ type	Weightage in Marks				
Internal Test	40				
Sem End Exam	60				
Total	100				

Content of Practical Course 1: List of Experiments to be conducted

PART-A Analytical Chemistry

- 1. Calibration of glassware, pipette, burette and volumetric flask.
- 2. Determination of sodium carbonate and sodium bicarbonate in a mixture.
- 3. Determination of alkali present in soaps/detergents
- 4. Determination of iron(II) using potassium dichromate
- 5. Determination of oxalic acid using potassium permanganate solution
- 6. Standardization of EDTA solution and determination of hardness of water
- 7. Determination of Fe_2^{2+} as Fe_2O_3
- 8. Determination of Ni^{2+} as $Ni(DMG)_2$ complex.

PART-B Organic Chemistry

- 1. Selection of suitable solvents for Purification/Crystallization of organic compounds.
- 2. Preparation of acetanilide from aniline using Zn/acetic acid (Green method).
- 3. Synthesis of p-nitro acetanilide from acetanilide using nitrating mixture.
- 4. Bromination of acetanilide (i) Conventional method and/or (ii) with ceric ammonium nitrate and potassium bromide (Green method).
- 5. Hydrolysis of methyl m-nitrobenzoate to m-nitrobenzoic acid (Conventional method)
- 6. Synthesis of diazoaminobenzene from aniline (conventional method).
- 7. Preparation of dibenzalacetone (Green method).
- 8. Diels Alder reaction between furan and maleic acid (Green method).

B.Sc Semester 1 – Chemistry (Hons) with specialization in Analytical Chemistry

Number of Theory Credits	Number of lecture hours/ semester	Number of practical Credits	dits Number of practical hours/ semesters 42			
3	42	-				
	Content of The	ory Course 1		42 Hrs		
Unit –1						
and butter. Estimation detection of chicory in alcoholic beverages. Food additives, ad propionates, sorbates, and sodium cyclamate.	position of milk and milk prod of added water in milk. Beve n coffee, chloral hydrate in ulterants, and contamina disulphites. Artificial sweeter Flavors: Vanillin, alkyl esters nts: Coal tar dyes and non od.	erages: Analysis of caffeine n toddy, determination of nants- Food preservatives ners: Aspartame, saccharin, s (fruit flavors), and monosoc	in coffee and tea, methyl alcohol in like benzoates, dulcin, sucralose, lium glutamate.			
Unit - 2				14		
A1, Vitamin B1, Vitamir Oils and fats: Compo adulterants like argemo	n and Nomenclature. Source n C, Vitamin D, Vitamin E & \ osition of edible oils, detectione oil and mineral oils. Halp Definition, classification, mar	/itamin K1. ion of purity, rancidity of fa hen test.	ts and oil. Tests for			
Unit - 3				14		
future energy storer. Polymers: Basic conce polymers as plastics in	able Energy Sources: ions of primary & secondary ept of polymers, classificatior electronic, automobile comp ste management. Strategies	n and characteristics of polyn onents, medical fields, and a	ners. Applications of aerospace materials.			

Title of the Course:OE-1: CHEMISTRY IN DAILY LIFE

Text Books

- 1. B. K. Sharma: Introduction to Industrial Chemistry, Goel Publishing, Meerut (1998)
- 2. Medicinal Chemistry- Ashtoush Kar.
- 3. Analysis of Foods H.E. Cox: 13.
- 4. Chemical Analysis of Foods H.E. Cox and Pearson.
- 5. Foods: Facts and Principles. N. Shakuntala Many and S. Swamy, 4thed. New Age International (1998)
- 6. Physical Chemistry P I Atkins and J. de Paula 7thEd. 2002, Oxford University Press.
- 7. Handbook on Fertilizer Technology by Swaminathan and Goswamy, 6th ed. 2001, FAI.
- 8. Organic Chemistry by I. L. Finar, Vol. 1 & 2. 9. Polymer Science and Technology, J. R. Fired (Prentice Hall).

References

Pedagogy

Formative Assessment						
Assessment Occasion/ type	Weightage in Marks					
Internal Test	40					
Sem End Exam	60					
Total	100					

Date

Course Co-ordinator

Subject Committee Chairperson

BSc Semester 2 – Chemistry (Hons) with specialization in Analytical Chemistry Title of the Course: DSC – 2: INORGANIC AND PHYSICAL CHEMISTRY - I

Number of Theory Credits	Number of lecture hours/semester	Number of practical Credits	Number of practical hours/ semesters			
4	56	2	56			
	Content of Th	eory Course 2		56Hrs		
Unit –1				14		
Bohr's theory, its limitations and atomic spectrum of hydrogen atom. Wave mechanics: de Broglie equation, Heisenberg's Uncertainty Principle and its significance, Schrödinger's wave equation, significance of ψ and ψ^2 . Quantum numbers and their significance. Normalized and orthogonal wave functions. Sign of wave functions. Radial and angular wave functions for hydrogen atom. Radial and angular distribution curves. Shapes of s, p, d and f orbitals. Contour boundary and probability diagrams. Pauli's Exclusion Principle, Hund's rule of maximum multiplicity, Aufbau's principle and its limitations- Electronic configurations of the elements (Z=1-30), effective nuclear charge, shielding/screening effect, Slater's rules. Variation of effective nuclear charge in Periodic Table.						
Unit - 2				14		
following properties (a) Atomic radii (van (b) Ionic and crystal (c) Covalent radii (d) Ionization enthal energy. Applications (e) Electron gain ent (f) Electronegativity, electronegativity sca hybridization, group	radii. py, successive ionization of of ionization enthalpy. halpy, trends of electron of Pauling's/ Mulliken's/ Allro les. Variation of electrone electronegativity. istry of the compounds of	rence to s and p-block el enthalpies and factors af gain enthalpy. ed Rachow's/ and Mullike egativity with bond order,	ements: fecting ionization en-Jaffé's partial charge,			
Unit - 3				14		
(derivation not required cross section, collision of σ and η , variation Maxwell's Boltzman root mean square v and average kinetic energy. Behaviour of real gat its variation with privander Waals equation behaviour. Critical gat	of kinetic theory of gas ired),Molecular velocity, c ion number and mean fre of viscosity with tempera n distribution law of mole elocities). Relation betwe energies. (Mathematical ases: Deviation from idea essure for different gase ation of stat (No deriva phenomena - Andrews is der Waals equation, Cor	collision frequency, collision are path and coefficient of ature and pressure. ecular velocities (Most p een RMS, average and r derivation not required), al gas behaviour. Compre- es. Causes of deviation tion) and application in sotherms of CO ₂ , critica	on diameter, Collision f viscosity, calculation robable, average and nost probable velocity law of equipartition of essibility factor (Z) and from ideal behaviour, explaining real gas il constants and their			

 Surface Tension: Definition and its determination using stalagmometer, effect of temperature and solute on surface tension Viscosity: Definition, Coefficient of viscosity. Determination of viscosity of a liquid using Oswald viscometer. Effect of temperature, size, weight, shape of molecules and intermolecular forces. Refraction: Specific and molar refraction- definition and advantages. Determination of refractive index by Abbes Refractometer. Additive and constitutive properties. Parachor: Definition, Atomic and structure parachor, Elucidation of structure of benzene and benzoquinone. Viscosity and molecular structure. Molar refraction and chemical constitution. Numerical Problems. 	
Unit - 4	14
Liquid Crystals Explanation, classification with examples- Smetic, nematic, cholesteric, dics shaped and polymeric. Structures of nematic and cholesteric phases-molecular arrangements in nematic and cholesteric liquid crystals. Applications of liquid crystals in LCDs and thermal sensing. Solids	
Forms of solids: Unit cell and space lattice, anisotropy of crystals, size and shape of crystals, Laws of Crystallography: Law of constancy of interfacial angles, Law of rational indices, Law of symmetry (Symmetry elements), Crystal systems, Bravais lattice types and identification of lattice planes.	
Miller indices and its calculation, X–Ray diffraction by crystals: Bragg's law and derivation of Bragg's equation, Single crystal and powder diffraction methods. Defects in crystals, glasses and liquid crystals. Numerical problems.	
Distribution Law Nernst Distribution Law - Statement and its derivation. Distribution constant, factors affecting distribution constant, validity of Distribution Law, Modification of distribution law when molecules undergo a) Association b) Dissociation. Application of Distribution Law in Solvent extraction. Derivation for simple and multiple extraction. Principles of distribution law in Parkes Process of desilverisation of lead. Numerical Problems.	

Text Books

- Concise Inorganic Chemistry: J D Lee, 4th Edn, Wiley, (2021)
 Fundamentals Concepts of Inorganic Chemistry, Vol 1 and 2, 2nd Edition, Asim K Das, CBS Publishers and Distributors, (2013)
- Basic Inorganic Chemistry, FA Cotton, G Wilkinson and P. L. Gaus, 3rd Edition. Wiley. India
 Inorganic Chemistry, 2nd Edn. Catherine E. Housecroft and A.G. Sharpe, Pearson Prentice Hall (2005)
- 5. Atkins Physical Chemistry.8th Edition. Peter Atkins & Julio De Paula Oxford University Press.
- 6. Physical Chemistry by Samuel Glasstone, ELBS (1982).
- 7. A Text book of Physical Chemistry, A S Negi & S C Anand, New Age International Publishers (2007).
- 8. Principles of Physical Chemistry, Puri, Sharma & Pathania, Vishal Publishing Co.
- A Text Book of Physical Chemistry P.L.Soni , O.P. Dharmarhaand and U.N.Dash, Sultan Chand 9. and Sons.
- 10. Advanced Physical Chemistry, Gurdeep Raj, Goel Publishing House (2018)

References

Pedagogy

Formative Assessment				
Assessment Occasion/ type	Weightage in Marks			
Internal Test	40			
Sem End Exam	60			
Total	100			

DateCourse Co-ordinatorSubject Committee ChairpersonContent of Practical Course 2: List of Experiments to be conducted

PART-A Inorganic Chemistry

TITRIMETRY

- 1. Determination of carbonate and hydroxide present in a mixture.
- 2. Determination of oxalic acid and sodium oxalate in a given mixture using standard KMnO₄/NaOH solution
- 3. Standardization of potassium permanganate solution and determination of nitrite in a water sample
- 4. Standardization of silver nitrate and determination of chloride in a water sample (demonstration)
- 5. Determination of alkali content in antacids
- 6. Determination of chlorine in bleaching powder using iodometric method.

GRAVIMETRY

- 1. Determination of Ba²⁺ as BaSO₄
- 2. Determination of Cu²⁺ as CuSCN

PART-B Physical Chemistry

- 1. Safety Practices in the Chemistry Laboratory, Knowledge about common toxic chemicals and safety measures in their handling, cleaning and drying of glassware's
- 2. Determination of density using specific gravity bottle and viscosity of liquids using Ostwald's viscometer (Ethyl acetate, Toluene, Chloroform, Chlorobenzene or any other non-hazardous liquids)
- 3. Study of the variation of viscosity of sucrose solution with the concentration of a solute
- Determination of the density using specific gravity bottle and surface tension of liquids using Stalagmometer (Ethyl acetate, Toluene, Chlorobenzene, any other nonhazardous liquids
- 5. Study of variation of surface tension of detergent solution with concentration.
- 6. Determination of specific and molar refraction by Abbes Refractometer. (Ethyl acetate, Methyl acetate, Ethylene Chloride)
- 7. Determination of the composition of liquid mixture by refractometry. (Toluene & Alcohol, Water & Sucrose)
- 8. Determination of partition/distribution coefficient i) Acetic acid in water and cyclohexane. ii) Acetic acid in Water and Butanol. iii) Benzoic acid in water and toluene.

BSc Semester 2 – Chemistry (Hons) with specialization in Analytical Chemistry Title of the Course:OE – 2: Molecules of Life

Number of Theory Credits	Number of lecture hours/semester	Number of practical Credits	Number of prac hours/ semeste			
3	42	-	42			
Content of Theory Course 2						
Unit –1				14		
glucose and fructose Linkage between m and polysaccharides Amino Acids, Pept Classification ofamin	no acids, Zwitterion struct / and Quaternary struc	ares. Epimers, mutarotati e of disaccharides (sucro ccluding their structure el ure and Isoelectric point	on and anomers. ose, maltose, lactose) lucidation. .Overview of Primary,			
Unit - 2				14		
 Enzymes and correlation with drug action Mechanism of enzyme action, factors affecting enzyme action, Co-enzymes and cofactors and their role in biological reactions, Specificity of enzyme action (including stereospecificity), Enzyme inhibitors and their importance, phenomenon of inhibition (Competitive and Non competitive inhibition including allosteric inhibition). Drug action-receptor theory. Structure–activity relationships of drug molecules, binding role of –OH group, -NH₂ group, double bond and aromatic ring Lipids Introduction to lipids, classification. Biological importance of triglycerides, phospholipids, glycolipids, and steroids (cholesterol). 						
Unit - 3				14		
Nucleic Acids Components of nucleic acids: Adenine, guanine, thymine and cytosine (Structure only), other components of nucleic acids, Nucleosides and nucleotides (nomenclature), Structure of polynucleotides; Structure of DNA (Watson-Crick model) and RNA (types of RNA), Genetic Code, Biological roles of DNA and RNA: Replication, Transcription and Translation. Concept of Energy in Biosystems Calorific value of food. Standard caloric content of carbohydrates, proteins and fats. Oxidation of foodstuff (organic molecules) as a source of energy for cells. Introduction to Metabolism (catabolism, anabolism), ATP: the universal currency of cellular energy, ATP hydrolysis and free energy change. Conversion of food into energy. Outline of catabolic pathways of Carbohydrate- Glycolysis, Fermentation, Krebs Cycle. Overview of catabolic pathways of Fats and Proteins. Interrelationships in the metabolic pathways of Proteins, Fats and Carbohydrates.						

- 1. Morrison, R. T. & Boyd, R. N. *Organic Chemistry*, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 2. Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 3. Finar, I. L. Organic Chemistry (Volume 2), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 4. Nelson, D. L. & Cox, M. M. Lehninger's Principles of Biochemistry 7th Ed.,
- 5. W. H. Freeman. Berg, J.M., Tymoczko, J.L. & Stryer, L. *Biochemistry*, , 2002.

References

Pedagogy

Formative Assessment				
Assessment Occasion/ type	Weightage in Marks			
Internal Test	40			
Sem End Exam	60			
Total	100			

Date

Course Co-ordinator

Subject Committee Chairperson

Question Paper Pattern for B.Sc. I/II Semester Theory Examination Subject: CHEMISTRY

Paper: DSC-1/DSC-2: -----

Time: 3 hour]

[Max. Marks: 60

Instructions: i) Answer any **FIVE subdivisions from Part-A** and **any TWO** questions each from Part-B and Part-C.

ii) Figures to the right indicate marks.

Q-1. Answer any FIVE out of EIGHT subdivisions: $(5 \times 2 = 10)$ (02 Questions should be drawn from each Unit)

a), b), c), d), e), f), g) and h).

<u>Part-B</u>

Answer any TWO questions of the following: $(2 \times 13 = 26)$

(The questions to be drawn from Unit-1 and Unit-2 by giving equal weightage to each unit)

Q-2.	a + b + c	4 + 4 + 5 = 13	or	3 + 5 + 5 = 13
Q-3.	a + b + c	4 + 4 + 5 = 13	or	3 + 5 + 5 = 13
Q-4.	a + b + c	4 + 4 + 5 = 13	or	3 + 5 + 5 = 13

Part-C

Answer any TWO questions of the following: 24)

(The questions to be drawn from Unit-3 and Unit-4 by giving equal weightage to each unit)

Q-5.	a + b + c	4 + 4 + 4 = 12	or	3 + 4 + 5 = 12
Q-6.	a + b + c	4 + 4 + 4 = 12	or	3 + 4 + 5 = 12
Q-7.	a + b + c	4 + 4 + 4 = 12	or	3 + 4 + 5 = 12

$(2 \times 12 =$

Question Paper Pattern for B.Sc. I/II Semester Theory Examination Subject: CHEMISTRY

Elective Paper: OE-1/OE-2: -----

 Time: 3 hour]
 [Max. Marks: 60

 Instructions:
 i) Answer any FOUR subdivisions from Part-A and any FOUR questions from Part-B by selecting at least ONE full question from each Unit.

ii) Figures to the right indicates marks.

Part-A

Q-1. Answer any FOUR out of SIX subdivisions: $(4 \times 2 = 08)$ (02 Questions to be drawn from each Unit) a), b), c), d), e) and f). (4 × 2 = 08)

<u>Part-B</u>

Answer any FOUR questions by selecting at least ONE full question from each Unit: $(4 \times 13 = 52)$

52)

		<u>Unit-I</u>		
Q-2.	a + b + c	4 + 4 + 5 = 13	or	3 + 5 + 5 = 13
Q-3.	a + b + c	4 + 4 + 5 = 13	or	3 + 5 + 5 = 13

	<u>Unit-II</u>					
Q-4.	a + b + c	4 + 4 + 5 = 13	or	3 + 5 + 5 = 13		
Q-5.	a + b + c	4 + 4 + 5 = 13	or	3 + 5 + 5 = 13		

		<u>Unit-III</u>				
Q-6.	a + b + c	4 + 4 + 5 = 13	or	3 + 5 + 5 = 13		
Q-7.	a + b + c	4 + 4 + 5 = 13	or	3 + 5 + 5 = 13		

Question Paper Pattern for B.Sc. I/II Semester Theory Examination Subject: CHEMISTRY

Paper: DSC-1/DSC-2: -----

Time: 3 hour]

Instructions: i) Answer any **FIVE subdivisions from Part-A** and **any TWO** questions each from Part-B and Part-C.

ii) Figures to the right indicate marks.

Part-A

Q-1. Answer any FIVE out of EIGHT subdivisions:

(02 Questions should be drawn from each Unit)

a), b), c), d), e), f), g) and h).

Part-B

Answer any TWO questions of the following:

(The questions to be drawn from Unit-1 and Unit-2 by giving equal weightage to each unit)

Q-2.	a + b + c	4 + 4 + 5 = 13	or	3 + 5 + 5 = 13
Q-3.	a + b + c	4 + 4 + 5 = 13	or	3 + 5 + 5 = 13
Q-4.	a + b + c	4 + 4 + 5 = 13	or	3 + 5 + 5 = 13

Part-C

Answer any TWO questions of the following:

(The questions to be drawn from Unit-3 and Unit-4 by giving equal weightage to each unit)

Q-5.	a + b + c	4 + 4 + 4 = 12	or	3 + 4 + 5 = 12
Q-6.	a + b + c	4 + 4 + 4 = 12	or	3 + 4 + 5 = 12
Q-7.	a + b + c	4 + 4 + 4 = 12	or	3 + 4 + 5 = 12

$(2 \times 12 = 24)$

 $(5 \times 2 = 10)$

 $(2 \times 13 = 26)$

[Max. Marks: 60

Question Paper Pattern for B.Sc. I/II Semester Theory Examination Subject: CHEMISTRY

Elective Paper: OE-1/OE-2: -----

Time: 3 hour]

[Max. Marks: 60

Instructions: i) Answer any FOUR subdivisions from Part-A and any FOUR questions from Part-B by selecting at least ONE full question from each Unit.

ii) Figures to the right indicates marks.

Part-A

Q-1. Answer any FOUR out of SIX subdivisions:

(02 Questions to be drawn from each Unit)

a), b), c), d), e) and f).

<u>Part-B</u>

Answer any FOUR questions by selecting at least ONE full question from each Unit: $(4 \times 13 = 52)$

			<u>Unit-I</u>	
Q-2.	a + b + c	4 + 4 + 5 = 13	or	3 + 5 + 5 = 13
Q-3.	a + b + c	4 + 4 + 5 = 13	or	3 + 5 + 5 = 13

Unit-II	
---------	--

Q-4.	a + b + c	4 + 4 + 5 = 13	or	3 + 5 + 5 = 13
Q-5.	a + b + c	4 + 4 + 5 = 13	or	3 + 5 + 5 = 13

Q-6.	a + b + c	4 + 4 + 5 = 13 or	3 + 5 + 5 = 13
Q-7.	a + b + c	4 + 4 + 5 = 13 or	3 + 5 + 5 = 13

 $(4 \times 2 = 08)$